• Title/Summary/Keyword: 원주방향 표면타원균열

Search Result 2, Processing Time 0.017 seconds

Reliability Assessment of Buried Pipelines with a Circumferential Surface Elliptical Crack under Axial Stress (축직각 표면타원균열이 존재하는 매설배관의 축방향응력에대한 건전성 평가)

  • Lee, Eok-Seop;Hwang, In-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.160-166
    • /
    • 2001
  • The theoretical analyses for stresses induced in axial direction in the buried pipelines are reviewed. The influences of the axially directed stresses on the surface elliptical crack are studied in detail and thus some engineering technical informations are provided to use reliability assessment of buried pipelines. The change in temperature, the effect of inner pressure and soil friction in the buried pipeline constrained in axial direction are included to determine the axial stresses in the buried pipeline. Furthermore, the stress induced by the pipeline bending are also considered. The stress intensity factors calculated by two models such as a simple plane crack and an elliptical surface crack for a circumferential surface elliptical crack are compared.

  • PDF

[ $C^{\ast}$ ]-integral Based Life Assessment of High Temperature Pipes ($C^{\ast}$-적분에 기초한 고온배관 수명평가)

  • Lee Hyungyil
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.4 s.12
    • /
    • pp.25-33
    • /
    • 2000
  • In recent years, the subject of remaining life assessment has drawn considerable attention in power plants, where various structural components typically operate at high temperature and pressure. Thus a life prediction methodology accounting for high temperature creep fracture is increasingly needed for the components. Critical defects in such structures are generally found in the form of semi-elliptical surface crack, and the analysis of which is consequently an important problem in engineering fracture mechanics. On this background, we first develop an auto mesh generation program for detailed 3-D finite element analyses of axial and circumferential semi-elliptical surface cracks in a piping system. A high temperature creep fracture parameter $C^{\ast}$-integral is obtained from the finite element analyses of generated 3-D models. Post crack growth module is further appended here to calculate the amount of crack growth. Finally the remaining lives of surface cracked pipes for various analytical parameters are assessed using the developed life assessment program.

  • PDF