• Title/Summary/Keyword: 원전 구조물

Search Result 174, Processing Time 0.02 seconds

The Influence of Festival Service Quality on the Satisfaction and the Revisit Intention: Focused on Visitors of The Buan Masil Festival (지역축제의 서비스품질이 만족과 재방문의도에 미치는 영향 연구: 부안 마실축제를 중심으로)

  • Yoo, Hana HyunKyung;Kim, Ki Hyun;Kim, Mi Seong;Yoon, Yoo Shik
    • Korea Science and Art Forum
    • /
    • v.26
    • /
    • pp.221-230
    • /
    • 2016
  • This paper is focused on the service quality of Buan Masil Festival. The objectives of the research were to explore whether or not the service quality of local festival affects overall satisfaction and revisit intention Data were collected using self-administered questionnaires at the 4th Buan Masil Festival on May 6-8, 2015. A total of 373 valid samples were used for the analysis. The results of the study indicate that service quality of program, souvenir, and facility lead to visitors' satisfaction, and visitors' satisfaction influenced revisit intention. The results concludes with a discussion of implication for future research.

Analysis of Thermal Shock Behavior of Cladding with SiCf/SiC Composite Protective Films (SiCf/SiC 복합체 보호막 금속피복관의 열충격 거동 분석)

  • Lee, Dong-Hee;Kim, Weon-Ju;Park, Ji-Yeon;Kim, Dae-Jong;Lee, Hyeon-Geon;Park, Kwang-Heon
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.40-44
    • /
    • 2016
  • Nuclear fuel cladding used in a nuclear power plant must possess superior oxidation resistance in the coolant atmosphere of high temperature/high pressure. However, as was the case for the critical LOCA (loss-of-coolant accident) accident that took place in the Fukushima disaster, there is a risk of hydrogen explosion when the nuclear fuel cladding and steam reacts dramatically to cause a rapid high-temperature oxidation accompanied by generation of a huge amount of hydrogen. Hence, an active search is ongoing for an alternative material to be used for manufacturing of nuclear fuel cladding. Studies are currently aimed at improving the safety of this cladding. In particular, ceramic-based nuclear fuel cladding, such as SiC, is receiving much attention due to the excellent radiation resistance, high strength, chemical durability against oxidation and corrosion, and excellent thermal conduction of ceramics. In the present study, cladding with $SiC_f/SiC$ protective films was fabricated using a process that forms a matrix phase by polymer impregnation of polycarbosilane (PCS) after filament-winding the SiC fiber onto an existing Zry-4 cladding tube. It is analyzed the oxidation and microstructure of the metal cladding with $SiC_f/SiC$ composite protective films using a drop tube furnace for thermal shock test.

Distribution and characteristics of Quaternary faults in the coastal area of the southeastern Korean Peninsula: Results from a marine seismic survey (해양 탄성파 탐사 결과로 본 한반도 남동부연안 4기 단층의 분포와 특성)

  • Kim Han-Joon;Jou Hyeong-Tae;Hong Jong-Kuk;Park Gun-Tae;Nam Sang-Heon;Cho Hyun-Moo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.46-66
    • /
    • 2002
  • High-resolution multichannel seismic data were collected in the coastal area near the Gori nuclear power plant to investigate Quaternary fault pattern and timing. A 12 channel streamer, a sparker, and a portable recorder were used for data acquisition. Because the group interval of the streamer was 6.25 m and the sparker can generate acoustic waves with the frequency content of up to 500 Hz, the data show a significant improvement both in horizontal and vertical resolution. The area surveyed is covered with 30-40 m thick Holocene sediments that constitute the mud belt along the southeastern coast of Korea. The survey area is characterized by the well discriminated Pleistocene and Holocene boundary and shallow gas-charged zones. A number of Quaternary faults were found in the sediment column, that are nearly vertical and extend north-south. The Quaternary faults, arranged at a spacing of a few hundred meters, suggest that they were formed in response to compression, although some of them reveal extensional characteristics. Locally, faults disrupt Incised-channel fills that are interpreted to have formed in the early stage of transgression after the beginning of the Holocene. Seismic sections suggest that shallow gas in the mud belt sediments made its way upward through the fractured fault planes. The tectonism responsible for the opening of the East Sea has not persisted since the late Miocene, but vigorous Quaternary faulting activity in the vicinity of the southeastern Korean Peninsula indicates that tectonic stability has yet to be achieved in this region underlain by the hotter than normal mantle.

  • PDF

Activation Analysis of Dual-purpose Metal Cask After the End of Design Lifetime for Decommission (설계수명 이후 해체를 위한 금속 겸용용기의 방사화 특성 평가)

  • Kim, Tae-Man;Ku, Ji-Young;Dho, Ho-Seog;Cho, Chun-Hyung;Ko, Jae-Hun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.343-356
    • /
    • 2016
  • The Korea Radioactive Waste Agency (KORAD) has developed a dual-purpose metal cask for the dry storage of spent nuclear fuel that has been generated by domestic light-water reactors. The metal cask was designed in compliance with international and domestic technology standards, and safety was the most important consideration in developing the design. It was designed to maintain its integrity for 50 years in terms of major safety factors. The metal cask ensures the minimization of waste generated by maintenance activities during the storage period as well as the safe management of the waste. An activation evaluation of the main body, which includes internal and external components of metal casks whose design lifetime has expired, provides quantitative data on their radioactive inventory. The radioactive inventory of the main body and the components of the metal cask were calculated by applying the MCNP5 ORIGEN-2 evaluation system and by considering each component's chemical composition, neutron flux distribution, and reaction rate, as well as the duration of neutron irradiation during the storage period. The evaluation results revealed that 10 years after the end of the cask's design life, $^{60}Co$ had greater radioactivity than other nuclides among the metal materials. In the case of the neutron shield, nuclides that emit high-energy gamma rays such as $^{28}Al$ and $^{24}Na$ had greater radioactivity immediately after the design lifetime. However, their radioactivity level became negligible after six months due to their short half-life. The surface exposure dose rates of the canister and the main body of the metal cask from which the spent nuclear fuel had been removed with expiration of the design lifetime were determined to be at very low levels, and the radiation exposure doses to which radiation workers were subjected during the decommissioning process appeared to be at insignificant levels. The evaluations of this study strongly suggest that the nuclide inventory of a spent nuclear fuel metal cask can be utilized as basic data when decommissioning of a metal cask is planned, for example, for the development of a decommissioning plan, the determination of a decommissioning method, the estimation of radiation exposure to workers engaged in decommissioning operations, the management/reuse of radioactive wastes, etc.