• Title/Summary/Keyword: 원자력시스템

Search Result 1,282, Processing Time 0.017 seconds

A Study on the Dose Assessment Methodology Using the Probabilistic Characteristics of TL Element Response (확률분포 특성을 이용한 열형광선량계의 선량평가방법에 관한 연구)

  • Cho, Dae-Hyung;Oh, Jang-Jin;Han, Seung-Jae;Na, Seong-Ho;Hwang, Won-Guk;Lee, Won-Keun
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.3
    • /
    • pp.123-138
    • /
    • 1998
  • Characteristics of element responses of Panasonic UD802 personnel dosimeters in the X, ${\beta}$, ${\gamma}$, ${\gamma}/X$, ${\gamma}/{\beta}$ and ${\gamma}$/neutron mixed fields were assessed. A dose-response algorithm has been developed to decide the high probability of a radiation type and energy by using the distribution in all six ratios of the multi-element TLD. To calculate the 4-element response factors and ratios between the elements of the Panasonic TLDs in the X, $\beta$, and $\gamma$ radiation fields, Panasonic’s UD802 TLDs were irradiated with KINS’s reference irradiation facility. In the photon radiation field, this study confirms that element-3 (E3) and element-4 (E4) of the Panasonic TLDs show energy dependent both in low- and intermediate-energy range, while element-1 (E1) and element-2 (E2) show little energy dependency in the entire whole range. The algorithm, which was developed in this study, was applied to the Panasonic personnel dosimetry system with UD716AGL reader and UD802 TLDs. Performance tests of the algorithm developed was conducted according to the standards and criteria recommended in the ANSI N13.11. The sum of biases and standard deviations was less than 0.232. The values of biases and standard deviations are distributed within a triangle of a lateral value of 0.3 in the ordinate and abscissa, With the above algorithm, Panasonic TLDs satisfactorily perform optimum dose assessment even under an abnormal response of the TLD elements to the energy imparted. This algorithm can be applied to a more rigorous dose assessment by distinguishing an unexpected dose from the planned dose for the most practical purposes, and is useful in conducting an effective personnel dose control program.

  • PDF

Investigation on the Perception of Mandatory Clinical Practice in the Department of Radiology Following the Amendment of the Medical Technologists Act (의료기사 등에 관한 법률 개정으로 방사선(학)과 현장실습 의무화에 따른 인식 조사)

  • Jeong-Mu Lee;Yong-Ki Lee;Sung-Min Ahn
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.293-300
    • /
    • 2024
  • On October 31, 2023, the revision of the Medical Technologist Act made it mandatory to complete field training courses in order to obtain a license as a radiologic technologist. Therefore, we would like to survey the actual situation of field training in medical institutions to inform the revised Medical Technologist Act and propose improvement measures to increase the effectiveness of field training. A survey was conducted from March to April, 2023, among radiologic technologists working in medical institutions. The questionnaire was sent through a form on a domestic portal site, Company N, and 120 respondents completed it. Eighty-two respondents, or 68.3 percent, had experience in educating on-the-job training students. 58% of the respondents were aware of the fact that the amendment to the Act on Medical Technologist etc. made field training mandatory to obtain a radiologic technologist license. In accordance with Article 9 of the Medical Technologist Act, which prohibits unlicensed persons from practicing, 50% of the respondents were aware that those who are in training to complete an education course equivalent to the license they are seeking to obtain at a university or other institution are allowed to practice as medical Technologists. When asked what is currently taught during fieldwork, 6% of respondents said that they are required to perform radiation-generating activities in addition to observing, guiding patients, and positioning and moving patients. When asked about the future direction of education as fieldwork becomes mandatory for licensure, 77% of respondents said that they will teach more than they currently do. When asked about the appropriate total length of fieldwork, 35% said 12 weeks and 480 hours, 33% said 8 weeks and 320 hours, and 27% said 16 weeks and 640 hours. It can be seen that the current on-the-job training is inadequate according to various regulations, and students' satisfaction is low. However, with the revision of the Act on Medical Technologists, field training has become mandatory to obtain a license as a radiologist, and it is necessary to improve the educational conditions of field training. Therefore, it is necessary to comply with the Nuclear Safety Act and the Rules on the Safety Management of Diagnostic Radiation Generating Devices, introduce standardized training objectives and evaluation systems, designate training hospitals and radiologists in charge of training, and introduce extended training periods and simulation exercises to internalize field training.