• Title/Summary/Keyword: 원소 분리

Search Result 442, Processing Time 0.027 seconds

Mutual Separation of Am and Eu by Solvent Extraction with di-(2-ethylhexyl)phosphoric acid Containing Zirconium(III) (Zr을 함유한 di-(2-ethylhexyl)phosphoric acid에 의한 Am과 Eu의 상호분리(III))

  • Yang, Han-Beom;Lee, Eil-Hee;Lim, Jae-Gwan;Kim, Jong-Gu;Kim, Jung-Suk;Yoo, Jae-Hyung
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1006-1013
    • /
    • 1997
  • This study was carried out to elucidate the chemical characteristics of mutual separation for Am and Eu, which were selected as a stand-in from minor actinide and rare earth elements, by solvent extraction with di-(2-ethylhexyl)phosphoric acid containing zirconium at batch system. As results, 92.3% of Am and 99.1% of Eu were coextracted with 1M DEHPA/n-dodecane containing zirconium (Zr $concentration=8.7g/{\ell}$) at 0.5M $HNO_3$ in the extraction step. The extraction yields of Am and Eu were proportionally increased with the concentration of Zr in Zr salt of 1M DEHPA/n-dodecane having the synergistic effect. In the lst stripping step for the selective separation of Am, 38.1% of Am and 3% of Eu were stripped with the mixed solution of 0.05M DTPA and 1M lactic acid adjusted pH of 3.0. At that time, the separation factor calculated from the distribution coefficients of Am and Eu was 14.2. In the 2nd Stipping step to remove the Eu remained the organic phase after the lst stripping step, 94.4% 0f Eu was stripped into aqueous phase with 6M $HNO_3$.

  • PDF

PMO Theory of Orbital Interactions (Ⅳ). n-n Orbital Interactions in Some Heteroatom Systems (궤도간 상호작용의 섭동분자궤도 이론 (제4보). 헤테로 원자계에서의 n-n 궤도간 상호작용)

  • Ikchoon Lee;Chang Kook Sohn;Wang Ki Kim
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.330-339
    • /
    • 1983
  • The CNDO/2 and STO-3G calculations were performed on nitrogen, oxygen, and sulfur compounds in order to examine the effect of interactions between two nonbonding (n) orbitals in the same molecule separated by N intervening $\sigma$ bonds based on the PMO approach. Calculated basis level energies, energy splittings, and interaction energy changes for both chain and cyclic model compounds were qualitatively compared with the corresponding predictions derived from perturbational formalism for n-n orbital interactions and successfully explained in terms of the derived energy expressions. In general, through-space interaction term could be neglected in the N and O systems. And the calculated results were explained simply by through-bond interaction term. As a result, through-bond interaction placed n- below n+ for odd systems and n+ below n- for even systems. Also energy splittings in odd systems were larger than those in even systems. However, in the cases of cis-ethylene diamine and o-phenylene diamine(conformer VI in Table 4), through-space interaction term was found to be substantial and the opposing effects of through-space and through-bonds interactions were observed. Finally it was found that the interactions between two n orbitals on S atoms always had some contribution of the destabilizing through-space interaction term. This result was consistent with the fact that the lone pair lobes of third elements were larger in size than those of the second period elements.

  • PDF

Separation of selenite and selenate using magnetite (마그네타이트를 이용한 selenite와 selenate의 분리)

  • Min, Je-Ho;Kim, Seung-Soo;Baik, Min-Hoon;Bae, Kie-Seo
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.298-303
    • /
    • 2011
  • Selenium is one of the interesting elements in human body, because it's important micro-nutrient for human health as the essential biological tissue in protein. Selenite ($SeO_3^{2-}$) and selenate ($SeO_4^{2-}$) are the dominant dissolved selenium species in natural water, and their toxicity and chemical properties are very different each other. Thus it is necessary to separate the two selenium species for understanding selenium behaviors in natural waters. Some reported methods, using an alumina-filled column and an ion chromatography, to separate the selenite and selenite may be difficult to directly apply to the natural water. Therefore magnetite selectively adsorbs selenite and selenate according to pH of solution, the separation of selenite and selenate using a magnetite-filled column was successfully obtained at weak alkali solutions. Moreover, the influence of dissolved anions in natural water at the selenite sorption onto magnetite was also investigated because they could hinder the sorption of selenite onto magnetite. In other to directly apply to the natural water, reactive sites of magnetite should be considered because dissolved silicate in natural water can hinder the adsorption of selenite onto magnetite.

Study on the Separation of $^{55}Fe$, $^{90}FSr$$^{94}Nb$ in Radioactive Wastes (방사성 폐기물 내 $^{55}Fe$, $^{90}FSr$$^{94}Nb$의 분리 연구)

  • 이창헌;정기철;임석남;김원호;지광용
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.54-59
    • /
    • 2003
  • Several radionuclides are considered as an object of the assesment to develop a scaling factor and a periodical verification method which are needed for the evaluation of radionuclide inventory of various radioactive wastes from nuclear power plants in Korea. A selective separation of $^{55}Fe$, $^{90}FSr$$^{94}Nb$ which should be recovered individually for the radiochemical analysis was described in detail. Sorption and desorption behaviours of ion exchange and extraction chromatographic resins for Fe, Sr, Nb and co-existing metal ions were Investigated using an artificial waste solution simulated of chemical composition of real radioactive wastes. Separation conditions available for the sequential recovery of these metal ions from a single sample were optimized to minimize a discharge of radioactive wastes produced through the analytical process and a radiation exposure to analysts. Their recovery yields were measured with reliability.

  • PDF

Interpretation of Corrosion Mechanism on Anode side Separator for MCFC (용융탄산염 연료전지에서 양극측 분리판의 부식기구 해석)

  • Park, Hyeong-Ho;Lee, Min-Ho;Lee, Kyu-Taek
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.571-576
    • /
    • 1998
  • This study was carried out for investigating the corrosion behaviors, corrosion mechanisms, and behaviors of elements on a separator for a molten carbonate fuel cell under both the electrolyte and anode side environment. A 310S austenitic stainless steel was used as the separator material. Corrosion proceeded via three steps; the formation step of corrosion product in which rapid corrosion takes place until stable corrosion product is formed after the beginning of corrosion, the protection step against corrosion until breakaway occurs after the formation step of stable corrosion product and the advancing step of corrosion after the breakaway. From the standpoint of the behavior of the elements in the specimen, Fe and Cr, Ni were enriched in the region of corrosion product, in the region of corrosion protection, and at the Cr-deplete zone, respectively. With respect to corrosion mechanism, ionization of electrolyte at the anode side was the main corrosion mechanism, and the final corrosion products were $LiFeO_2$ and $LiCrO_2$ at the anode side.

  • PDF

A Review on Lithium Recovery by Membrane Process (멤브레인 공정에 의한 리튬 회수에 대한 총설)

  • Kim, Esther;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.315-326
    • /
    • 2021
  • Lithium ion battery (LIB) demands increase every year globally to reduce the burden on fossil fuels. LIBs are used in electric vehicles, stationary storage systems and various other applications. Lithium is available in seawater, salt lakes, and brines and its extraction using environmentally friendly and inexpensive methods will greatly relieve the pressure in lithium mining. Membrane separation processes, mainly nanofiltration (NF), is an effective way for the separation of lithium metal from solutions. Electrodialysis and electrolysis are other separation processes used for lithium separation. The process of reverse osmosis (RO) is already a well-established method for the desalination of seawater; therefore, modifying RO membranes to target lithium metals is an excellent alternative method in which the only bottleneck is the interfering presence of other metal elements in the solution. Selectively removing lithium by finding or developing suitable NF membranes can be challenging, but it is nonetheless an exciting area of research. This review discusses in detail about lithium recovery via nanofiltration, electrodialysis, electrolysis and other processes.

Analytical study on nickel content in ceramic, metal and plastic materials (세라믹, 금속 및 플라스틱 소재의 니켈 함유량 분석에 관한 연구)

  • Choi, Zel-Ho
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.443-450
    • /
    • 2011
  • Quantitative analytical condition for nickel in ceramic, metal and plastic materials using complexation and solvent extraction followed by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and atomic absorption spectrophotometry (AAS) was studied. Ceramic, metal and plastic samples were dissolved by acid digestion. Nickel was determined by ICP-AES and AAS after extraction of Ni $(DMG)_2$ in $CHCl_3$. Recovery efficiency of nickel was satisfactory, and most of matrix elements causing interference could be effectively eliminated by the separation. Nickel in the certified reference materials (BAM-376 and PACS-2) were quantitatively determined without influence of sample matrix.

CZTS태양전지 흡수층 제작을 위한 열분해법 나노 파티클 합성

  • Lee, Su-Ho;Kim, Dong-Uk;Lee, Jae-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.444.1-444.1
    • /
    • 2014
  • 높은 광흡수 계수를 갖는 Cu(In,Ga)Se2(CIGS) 화합물 박막 소재는 고효율 태양전지 양산을 위해 가장 전도유망한 재료이나 상대적으로 매장량이 적은 In 및 Ga을 사용한다는 소재적 한계가 있다. Cu2ZnSnSe4(CZTSe) 혹은 Cu2ZnSnS4(CZTS)와 같은 Cu-Zn-Sn-Se계 화합물 반도체는 CIGS 내 희소원소인 In과 Ga이 범용원소인 Zn 및 Sn으로 대체된 소재로써 미래형 저가 태양전지 개발을 위해 활발히 연구되고 있는데, 그 화합물 조합에 따라 0.8eV부터 1.5eV까지의 에너지 밴드갭을 갖는 것으로 알려져 있다. 본 연구에서는 열분해법으로 CZTS 나노 입자를 합성하였다. 용매로 Oleylamine을 사용하였는데, $220^{\circ}C{\sim}340^{\circ}C$의 온도 범위에서 3시간 30분 동안 CZTS 나노입자를 합성하였고, $240^{\circ}C$에서 3시간~5시간까지 합성하였다. 헥산을 이용하여 원심분리기와 초음파세척기로 용매인 Oleylamine을 제거하였고, 진공오븐에서 건조된 CZTS 분말의 FE-SEM(Field Emission Scanning Electron Microscope), XRD(X-Ray Diffraction), EDS(Energy Dispersive Spectroscopy) 분석 등을 통해 합성온도에 따른 구조적, 화학적 조성 변화를 조사하였다.

  • PDF

A Simple Preparation of Monoiodobromosulfophthalein-$^{131}$ I by Isotope Exchange for Medical Use

  • Kim, Jaerok;Kim, Tae-Ho
    • Nuclear Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 1977
  • Monoiodobromosulfophthalein-$^{131}$ I (MIBSP-$^{131}$ I), one of the useful radiopharmaceuticals for liver function studies, has been prepared by a simple isotope exchange between the MIBSP and the molecular iodine-$^{131}$ I in phosphate buffer, pH 5.3. The pooled cold MIBSP was prepared by a normal iodination of BSP using iodine monochloride, and separated from the iodination mixture by applying a Sephadex LH-20 chromatography. At 10$0^{\circ}C$, the exchange rate was so fast that the reaction could be terminated in 5 min to show upto 95% yield. The final product could be obtained simply by further heating for about 5 min in a boiling water bath in the presence of a small amount of hydrogen peroxide, and subsequent pH adjustment and membrane filtration.

  • PDF

CZTS 태양전지 제작을 위한 열분해법 나노 파티클 합성

  • Lee, Su-Ho;Seo, Mun-Su;Hong, Byeong-Yu;Park, Yong-Seop;Lee, Jae-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.321.1-321.1
    • /
    • 2013
  • 높은 광흡수 계수를 갖는 Cu(In,Ga)Se2(CIGS) 화합물 박막 소재는 고효율 태양전지 양산을 위해 가장 전도유망한 재료이나 상대적으로 매장량이 적은 In 및 Ga을 사용한다는 소재적 한계가 있다. Cu2ZnSnSe4(CZTSe) 혹은 Cu2ZnSnS4(CZTS)와 같은 Cu-Zn-Sn-Se계 화합물 반도체는 CIGS 내 희소원소인 In과 Ga이 범용원소인 Zn 및 Sn으로 대체된 소재로써 미래형 저가 태양전지 개발을 위해 활발히 연구되고 있는데, 그 화합물 조합에 따라 0.8eV부터 1.5eV까지의 에너지 밴드갭을 갖는 것으로 알려져 있다. 본 연구에서는 열분해법으로 CZTS 나노 입자를 합성하였다. 용매로 Oleylamine을 사용하였는데, $260{\sim}340^{\circ}C$의 온도 범위에서 5시간 30분 동안 CZTS 나노입자를 합성하였고, $300^{\circ}C$에서 5시간 30분~9시간까지 합성하였다. 헥산을 이용하여 원심분리기와 초음파세척기로 용매인 Oleylamine을 제거하였고, 진공오븐에서 건조된 CZTS 분말의 FE-SEM (Field Emission Scanning Electron Microscope), XRD (X-Ray Diffraction), EDS (Energy Dispersive Spectroscopy) 분석 등을 통해 합성온도에 따른 구조적, 화학적 조성 변화를 조사하였다.

  • PDF