• Title/Summary/Keyword: 원봉 후류

Search Result 4, Processing Time 0.02 seconds

Feedback Control of a Circular Cylinder Wake with Rotational Oscillation (주기적 회전을 이용한 원봉 후류의 되먹임 제어)

  • Baek, Seung-Jin;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1234-1240
    • /
    • 2002
  • A new feedback control law is proposed and tested for suppressing the vortex shedding from a circular cylinder in a uniform flow. The lift coefficient ( $C_{L}$) is employed as a feedback control signal and the control forcing is given by a rotational oscillation of the cylinder. The influence of the feedback transfer function on the $C_{L}$ reduction is examined. The main rationale of the feedback control is that a feedback control forcing is imposed at a phase which is located outside the range of lock-on. By applying the feedback control law, $C_{L}$ is reduced significantly. Furthermore, the reduction mechanism of $C_{L}$ is analyzed by showing the vortex formation modes with respect to the forcing phase.e.ase.e.

Feedback Control of a Circular Cylinder Wake with Rotational Oscillation (주기적 회전을 이용한 원봉 후류의 되먹임 제어)

  • Baek, Seung-Jin;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.265-270
    • /
    • 2001
  • This study presents a feedback control methodology for suppression of the vortex shedding from a circular cylinder in a uniform flow. A rotational oscillation is applied as a controlled forcing and the lift coefficient ($C_L$) is used as a feedback signal. A feedback control concept is made based on the phase relation between the rotation velocity and $C_L$ at 'lock-on', The phase between the forcing and the vortex formation is changed $180^{\circ}$ from the phase of enhancing the lock-on state. This concept is examined by solving the Van del Pol equation. The results are satisfactory.

  • PDF

Feedback Control of a Circular Cylinder Wake with Rotational Oscillation (주기적 회전을 이용한 원봉 후류의 되먹임 제어)

  • Lee S. B.;Baek S.-J.;Sung H. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.51-56
    • /
    • 2005
  • A new feedback control system based on system identification is proposed and preliminarily tested on Van der Pol equation which has a similar characteristic to circular cylinder. The same principle is applicable to circular cylinder in a uniform flow for suppresing the vortex shedding. The feedback controller is designed to impose feedback signal at the phase which is located outside the range of lock-on. The lift coefficient (CL) is employed as a feedback signal and the control forcing is given by a rotational oscillation of the cylinder. By applying the feedback control system, the lift coefficient is reduced.

  • PDF

Numerical simulation of the flow behind a circular cylinder with a rotary oscillation (주기적으로 회전하는 원봉 주위의 후류에 관한 수치적 연구)

  • Baek, Seung-Jin;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.267-279
    • /
    • 1998
  • A numerical study was made of flow behind a circular cylinder in a uniform flow, where the cylinder was rotationally oscillated in time. The temporal behavior of vortex formation was scrutinized over broad ranges of the two externally specified parameters, i.e., the dimensionless rotary oscillating frequency (.110.leq. $S_{f}$.leq..220) and the maximum angular amplitude of rotation (.theta.$_{max}$=15 deg., 30 deg. and 60 deg.). The Reynolds number (Re= $U_{{\inf}D}$.nu.) was fixed at Re=110. A fractional-step method was utilized to solve the Navier-Stokes equations with a generalized coordinate system. The main emphasis was placed on the initial vortex formations by varying $S_{f}$ and .theta.$_{max}$. Instantaneous streamlines and pressure distributions were displayed to show the vortex formation patterns. The vortex formation modes and relevant phase changes were characterized by measuring the lift coefficient ( $C_{L}$) and the time of negative maximum $C_{L}$( $t_{-C}$$_{Lmax}$) with variable forcing conditions.s.tions.s.s.s.