• Title/Summary/Keyword: 원관유동

Search Result 70, Processing Time 0.027 seconds

A Study on the Characteristics of Lift Fluctuation Power Spectral Density on a Fin Tube in the Heat Recovery Steam Generator (배열회수 보일러 단일 휜튜브의 양력 변동 PSD 특성 연구)

  • Ha, Ji Soo;Lee, Boo Youn;Shim, Sung Hun
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.211-216
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted by using single cicular tube or circular tube array and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. From the present study, the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared. For the previous mentioned purpose, the present CFD analysis introduced a single fin tube and calculated with the unsteady laminar flow over the single fin tube. The characteristics of vortex shedding and lift fluctuation over the fin tube was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift PSD over a single fin tube was established from the present CFD study.

A study on the flow induced vibration on a heat exchanger circular cylinder (열교환 단일 원관의 유동 유발 진동 특성에 관한 연구)

  • Ha, Ji Soo;Lee, Boo Youn;Shim, Sung Hun
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.109-114
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. The present study examined the results of the previous experimental researches for the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared from the present CFD analysis. For the previous mentioned purpose, the present CFD analysis introduced a single circular cylinder and calculated with the unsteady laminar flow over the cylinder. The characteristics of vortex shedding and lift fluctuation over the cylinder was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift PSD over a single circular cylinder was established from the present CFD study.

An Experimental Study on Convection Heat Transfer in an Oscillating Flow of a Heater Tube for Stirling Cycle Machines (스터링 사이클기기용 가열기 원관내부 왕복유동에서의 열전달에 관한 실험적 연구)

  • 강병하;이건태;이춘식;이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1547-1555
    • /
    • 1993
  • An experimental study on convection heat transfer characteristics from a heated tube to an oscillating flow has been carried out, . This problem is of particular interest in the design of heat exchangers in Stirling cycle machines. Experimental system has been developed to measure temporal variations of temperature inside a heater tube during oscillating modes in a Stirling cycle machine. The dependence of temperature distributions and heat transfer rates on the oscillating frequency as well as the swept volume ratio and the mean pressure of a Stirling cycle machine is investigated in detail. The experimental results indicate that the measured temporal variations of temperature become nearly sinusoidal. The amplitude of temperature variation in the core of the tube is much more substantial than that near the tube wall, whereas the reverse is true for pulsating flows. It is also found that the heat transfer rate is increased significantly as the oscillating frequency or oscillating amplitude or the mean pressure in a tube is increased.

Flow and Heat Transfer Characteristics of a Circular Cylinder with the Periodic Inlet Velocity (주기적인 입구 속도 변동에 따른 원관 주위 유동 및 열전달 특성)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.3
    • /
    • pp.27-32
    • /
    • 2019
  • In this study, the vorticity distribution and the temperature distribution change around a circular cylinder were compared and analyzed with time for constant inlet velocity and periodic inlet velocity. Also, the frequency characteristics of the flow were analyzed by analyzing the time variation of lift and drag and their PSD(power spectral density). In the case of constant inlet velocity, the well known Karman vorticity distribution was shown, and vortices were alternately generated at the upper and lower sides of the circular cylinder. In case of periodic inlet velocity, it was observed that vortex occurred simultaneously in the upper and lower sides of the circular cylinder. In both cases, it was confirmed that the time dependent temperature distribution changes almost the same behavior as the vorticity distribution. For the constant inlet velocity, the vortex flow frequency is 31.15 Hz, and for the periodic inlet velocity, the vortex flow frequency is equal to the preriodic inlet velocity at 15.57 Hz. The mean surface Nusselt number was 99.6 for the constant inlet velocity and 110.7 for the periodic inlet velocity, which showed 11.1% increase in surface heat transfer.

A Study on the Flow Characteristics in Tube Banks due to the Upstream Periodic Velocity Fluctuation (전열 관군에서 전방류의 주기적인 속도 변동에 따른 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.446-451
    • /
    • 2020
  • Flow induced vibration in a heat exchanger may cause damage to piping. The purpose of this study was to compare the characteristics of vortex shedding behavior through the circular tube banks at several tube locations, No.1, No. 10, and No. 19, with respect to time when the flow velocity of the inlet is constantly and periodically fluctuating.(60) The time characteristics of lift and the PSD characteristics were also investigated. In the case of periodic inlet flow velocity, strong vortex occurred at some time and after that time, a weak vortex was generated through the tube banks simultaneously. In the case of constant inlet flow velocity, the lift fluctuating frequency was 37.25Hz and that at the No. 19 tube was 18.63Hz and near 50Hz. In the case of periodic inlet flow velocity, the lift fluctuating frequency was 37.25Hz and 18.63Hz. The lift fluctuating frequency at No. 19 tube was observed broadly from 20Hz and 50Hz.

The Power Spectral Density Characteristics of Lift and Drag Fluctuation on a Heat Exchanger Circular Tube (열교환 단일 원관의 양력과 항력 변동에 따른 PSD 특성 연구)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.35-40
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. The present study examined the results of the previous experimental researches for the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared from the present CFD analysis. For the previous mentioned purpose, the present CFD analysis introduced a single circular cylinder and calculated with the unsteady laminar flow over the cylinder. The characteristics of vortex shedding and lift and drag fluctuation over the cylinder was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift and drag PSD over a single circular cylinder was established from the present CFD study.

Thermal-flow Characteristics of Magnetic Fluid for Concentric Annuli Under Fixing Magnetic Field Using Visualization Technique (가시화기법을 이용한 고정자장에서 이중원관내 자성유체의 열유동 특성에 관한 연구)

  • Kim, Hyung-Jin;Seo, Jae-Hyeong;Kim, Dae-Wan;Lee, Moo-Yeon;Seo, Lee-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.1
    • /
    • pp.26-30
    • /
    • 2013
  • This article is experimentally to investigate thermal-flow characteristics of the magnetic fluid for concentric annuli under externally fixed magnetic fields using visualization technique. Temperatures of the inner tube and outer tube in the tested concentric annuli were constantly maintained at both $30^{\circ}C$ and $25^{\circ}C$ and the middle tube was filled with the magnetic fluid. Magnetic field was uniformly applied using 4 permanent magnets at 4 directions of the concentric annuli. As a result, the thermal-flow characteristics of the magnetic fluid for concentric annuli could be controlled by directions of the external magnetic fields.

Steady Flow Analyses of Blood and the Blood Analogue Fluids in the Stenosed Circular and bifurcated Tubes (협착이 발생된 원관과 분기관내 혈액과 혈액대용유체의 정상유동해석)

  • 유상신
    • The Korean Journal of Rheology
    • /
    • v.7 no.2
    • /
    • pp.150-157
    • /
    • 1995
  • 본 논문의 목적은 협착이 발생괸 원관과 분기관내 혈액과 혈액대용유체의 유동문제 에 수치해석방법을 적용하여 유동특성을 파악하는데 있다. 혈액대용유체로서는 Separan AP-273 500wppm 수용액과 Carpobol 934 1.0w% 수용액을 사용하였다. Carbopol 수용액의 유변학적 성질은 수정멱법칙모델, 그리고 혈액과 Separan 수용액의 유변학적 성질은 Carreau 모델로 나타내었다. 협착관유동에서 Carbopol 수용액의 재부착거리는 혈액이나 Separan 수용액의 경우보다 길고 협착으로 인한 압력강하는 Carbopol 수용액, 혈액, Separan 수용액의 순으로 작게 나타난다. 분기관유동에서 Separan 수용액의 압력손실은 혈 액과 Carbopol 수용액보다 작게 나탄나고 협착이 발생괸 부기관내에서 혈액과 Separan 수 용액의 압력손실은 협착이 없는 분기관의 압력손실보다 크게 증가한다.

  • PDF

A Study on Flow Characteristic due to the Periodic Velocity Fluctuation of Upstream at Single Tube (단일 원관에서 전방류의 주기적인 속도 변동에 따른 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.613-618
    • /
    • 2019
  • The flow-induced vibration in a heat exchanger may cause the damage to piping. Therefore, it is necessary to establish the flow induced vibration characteristics for the structural stability of a heat exchanger. The purpose of this study was to compare the generation, development, and separation characteristics of a vortex around a circular tube with respect to time when the flow velocity of the inlet was fluctuating constantly and periodically. The time characteristics of lift and drag and the PSD characteristics were also investigated. In the case of a constant inlet flow velocity, the well-known Kalman vorticity distribution was shown. The vortex generation, growth, and separation were also observed alternately at the upper and lower sides of the tube. In the case of periodic inlet flow velocity, the vortex occurred simultaneously in the upper and lower sides of the tube. In the case of constant inlet flow velocity, the magnitude of the lift PSD was 500 times larger than that of drag. The frequency was 31.15 Hz and that of drag was doubled at 62.3 Hz. In case of a periodic inlet flow velocity, the PSD of the drag was approximately 500 times larger than that of lift. The frequency was 15.57 Hz, which was the same as the inlet-flow velocity frequency. In addition, the frequency of lift was 31.15 Hz, which was the same Karman vortex frequency.

Effects of Flow Diretion and Annular Gap Size on the Flow Pattern and Void Distribution in a Vertical Two-Phase Flow(I) - In Case of Upward Flow - (수직이상유에서 유동방향과 동심원관 간극이 유동양식과 보이드분포에 미치는 영향 (I))

  • 손병진;김인석;김문철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.856-866
    • /
    • 1987
  • In the present paper a statistical method using probability density function has been applied to investigate experimentally the flow patterns and fluctuations of time-averaged local void fraction in air-water two-phase mixtures which flow vertically upwards in concentric annuli. This study was carried out using three vertical concentric annuli. The annular test section consists of a lucite outer tube whose inside diameter is 38mm and a stainless steel inner rod. The rod diameter is either 12mm, 16mm or 20mm. The two-phase flow patterns observed in the experiment were bubbly, slug, annular and each transition patterns. It was first demonstrated that the variance, coefficients of skewness and kurtosis calculated from probability density function on time-averaged local void fraction can be used to identify the flow patterns in the annular passage, and the fluctuation of time-averaged local void fraction varies with the radial position in annular gap and the flow pattern.