• Title/Summary/Keyword: 원공크기

Search Result 10, Processing Time 0.019 seconds

The Effect of Hole Size on the Failure Strength and Fracture Toughness in Polymer Matrix Composite Plates (Plastic기 복합재료의 파손강도 및 파괴인성에 미치는 원공크기의 영향)

  • Kim, Jeong-Gyu;Kim, Do-Sik
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.197-204
    • /
    • 1993
  • Abstract The effects of the hole size and the specimen width on the fracture behavior of several fabric composite plates are experimentally investigated in tension. Tests are performed on plain woven glass/ epoxy, plain woven carbon/epoxy and satin woven glass/polyester specimens with a circular hole. It is shown in this paper that the characteristic length according to the point stress criterion depends on the hole size and the specimen width. An excellent agreement is found between the experimental results and the analytical predictions of the modified failure criterion. The notched strength increase with an increase in the damage ratio, which is explained by a stress relaxation due to the formation of damage zone. When the unstable fracture occurred, the critical crack length equivalent for the damage zone is about twice the characteristic length. The critical energy release rate $G_c$ is independent of hole size for the same specimen width. The variation of $G_c$ according to the material system, fiber volume fraction and specimen width relates to the notch sensitivity factor. $G_c$ increases with a decrease in the notch sensitivity factor, which can be explained by a stress relaxation due to the increase of damage zone.

  • PDF

3-D Analysis of Stress Distribution Around Micro Hole by F.E.M. (유한 요소법에 의한 미소 원공 주위의 응력 분포에 대한 3차원 해석)

  • 송삼홍;김진봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1462-1471
    • /
    • 1991
  • 본 연구에서는 미소 결함주위에서 발생, 전파하는 균열들에 미치는 초기 결함 깊이와 상호 간섭 영향을 검토하기 위하여 기존 재료가 갖고 있는 결함이나 비금속 개 재물로 대신할 수 있다고 생각되는 미소 원공의 크기를 변화시킨 모델에 대해 유한 요 소법을 이용하여 3차원적으로 응력을 해석하였다. 실제 사용하고 있는 부재에 결함 들이 존재할 경우 응력장의 간섭으로 피로 균열 진전이 가속화됨으로 미소 원공 주위 의 응력 분포 및 미소 원공사이의 응력장의 간섭과 미소 원공에서 발생, 전파하는 표 면 균열의 응력 확대 계수에 미치는 영향에 대하여 비교검토 하였다.

Notched Strength Analysis of CRALL Materials by FEM (I) (FEM에 의한 CRALL재의 노치강도 해석(I))

  • Yoon, Han-Ki
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.41-50
    • /
    • 1999
  • As for the properties on both the aluminum and the CFRP which are used to make A17075/CFRP multi-layered hybrid composites, CRALL(carbon reinforced aluminum laminate). In the CRALL specimen for rule of mixture, we were analyzed notched strength by finite element method. The results obtained from FEM analysis are as follows; In the unnotch CRALL specimen, the stresses CFRP, epoxy, Al 7075 obtained by finite element method strength solution for A/C0001, when strain is 0.28%, are 1400MPa, 38MPa, 411MPa. respectively and for A/C9991, when strain 0.48%, are 392MPa, 26MPa and 321Mpa, respectively. the solpe of the stress-strain curve by FEM increases in keeping with the hole size and the yield strain decrease to 36% and 55% for A/C9993 and A/C9991 respectively.

  • PDF

The Effect of Circulat Hole Size and Distribution on Strength of Braided Composite (브레이드 복합재료의 원공의 크기와 분포가 재료강도에 미치는 영향)

  • Lee, Gyeong-U;Gang, Tae-Jin
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.253-258
    • /
    • 1994
  • The effect of hole size and hole-to-hole distance in the braided and laminated composite was studied in terms of tensile strength, pin bearing strength, and flexural strength of S2-glass fiber braided polyester. The tensile strength reduction with hole size was well fitted with he Whitney and Nuismer's prediction for the laminated composite. The characteristic distance was measured to be about 1.6mm for braided composite and 1.8mm for laminated one. The effect of distance between the centers of two circu lar holes on tensile strength was negligible when the distance between these two holes was larger than 4 times of the diameter of circular hole for both braided and laminated composite. The side effect was diminished when the center of hole was located 3 times farther than the diamet.er of the hole. The pin bearing strengths was decreased with the size of pin hole for both braided and laminated composite.

  • PDF

The Study on Notch Strength Characteristics with Circular Hole Notch in A17075/CFRP Layered Composites (원공노치를 갖는 A17075/CFRP 적층 복합재의 노치강도 특성에 관한 연구)

  • 이제헌;김영환;박준수;윤한기
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.58-66
    • /
    • 2000
  • CARALL(Carbon fiber reinforced aluminum laminates) was fabricated with CFRP prepreg and A17075, using a autoclave. The mechanical properties of three samples i.e. A17075, CFRP and CARALL were also investigated as a function of size in circular holes. Theoretical approach into analysing mechanical behaviors near the circular hole notch was carried out to compare with experimental data, furthermore. By the adhesive bonding of A17075 to CFRP, abrupt strength reduction was prevented. From the consideration of modified point stress failure criterion, predicted results was well consistent with the experimental one.

  • PDF

Notched Strength and Fracture Criterion of Glass/Epoxy Plain Woven Composites Containing Circular Holes (원공을 가진 Glass/Epoxy 복합재료의 노치강도 및 파괴조건)

  • 김정규;김도식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1285-1293
    • /
    • 1992
  • The fracture behavior of glass/epoxy plain woven composite plates containing circular holes is experimentally investigated to examine the effects of hole size and specimen width on notched tensile strength. It is shown in this paper that the characteristic length according to the point stress criterion depends on the hole size and specimen width. For predicting the notched tensile strength, a modified failure criterion is developed. An excellent agreement is found between the experimental results and the analytical prediction of modified failure criterion. The notched strength and the characteristic length have an increase and decrease relations. When the unstable fracture occured, the critical crack length equivalent for the damage zone size at the edge of hole is about twice the characteristic length. The critical energy release rate G$_{c}$ is independent of hole size(0.03 .leq. 2R/W .leq. 0.5) under the same specimen width. However G$_{c}$ increases with an increase in specimen width which can be explained by stress relaxation due to the notch insensitivity.ity.

Buckling Behavior of Sandwich Composite Columns by Varying Hole Size and Hole Position (원공 크기 및 원공 위치에 따른 샌드위치 복합재 기둥의 좌굴 거동)

  • Lee, Sang-Jin;Yoon, Sung-Ho
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • The study investigated the buckling behavior of sandwich composite columns with different hole sizes and hole positions when they were applied to a compressive load. The columns consisted of 1.7mm thick faces of glass fabric/epoxy and 23mm, 37mm, 48mm, and 61mm thick cores of urethane-foam. Different hole sizes with the diameter of 25mm and 38mm were considered in this experiment. To evaluate the effect of hole position on the buckling behavior, we considered three types of hole position: 25mm diameter hole located at the center, 25mm diameter hole at 1/4 position from the center to the end of the column, and 25mm diameter hole at 1/2 position from the center to the end of the column. According to the results, buckling and maximum loads of the column having 25mm diameter hole were lower by 10% compared to those of the column without hole, whereas the loads for the column having 38mm diameter hole were 30% less than those of the column without hole. Hole position appeared to have no effect on buckling and maximum loads. Major failure modes were observed as follows: the core shear failure for the thin columns having 23mm and 37mm thick cores, and the face-core debonding for the thick columns having 48mm and 61mm thick cores.

A Study on the Threshold Condition of Crack Propagation for Pre-Crack and Micro-Hole Specimens (프리크랙과 微小圓孔材의 크랙成長 下限界條件에 관한 硏究)

  • 송삼홍;윤명진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.278-285
    • /
    • 1988
  • The Critical size of artificially induced micro-holes in 0.17%, 0.36% Carbon steel Specimens with Spheroidized Cementite and in 0.17% carbon steel specimens with martensite structure is compared with annealed pre-crack in order to discuss the physical meaning of the fatigue limit and evaluation of the tolerant micro flaw size at the stress level of the fatigue limit. Results obtained were summarized as follows; (1) In this study, non-propagating crack length of Smooth specimen and critical pre-crack length (lc) is coincide. (2) In the carbon steels with spheroidized cementite structure, critical pre-crack length (lc) and allowable micro-hole size (dc) is coincide each other at the fatigue limit level. (3) It has been published that there exists a particular size of micro-hole which has no effect on the fatigue limit. In this study, the micro-hole of critical size can be regarded as equivalent to a tolerant micro flaw which would not reduce the fatigue limit.

Study of Fatigue Behavior of Repaired Composites (복합재료의 수리후 피로거동 고찰)

  • 최재원;황운봉;박현철;한경섭
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.26-35
    • /
    • 1999
  • The static strength and fatigue life of repaired graphite/epoxy laminates are observed using tensile coupon. The lay-up of investigated laminates was [$0^{\circ}$/$\pm$$45^{\circ}$/$90^{\circ}$]$_s$. Static strength was measured from the specimens prepared by various repair techniques such as precured-single patch, precured-double patch and cure-in-place methods. The strength was recovered to the extent of 60~80 % of unnotched case. Fatigue life was also measured from the laminates repaired with cure-in-place method. Hwang and Han's MFLPE 1(modified fatigue life prediction equation 1), which was based on the fatigue modulus degradation model and reference modulus, was chosen for fatigue life prediction of repaired specimen and compared with the conventional fatigue life equation such as S-N curve and Basquin's relation. The MFLPE 1 has better agreement with experimental data than S-N curve and Basquin's relation.

  • PDF

Self-Diagnosis of Damage in Carbon Fiber Reinforced Composites Using Electrical Residual Resistance Measurement (잉여 전기 저항 측정을 이용한 탄소 섬유 강화 복합재의 파손 측정)

  • Kang, Ji-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.323-330
    • /
    • 2009
  • The objective of this research was to develop a practical integrated approach using extracted features from electrical resistance measurements and coupled electromechanical models of damage, for in-situ damage detection and sensing in carbon fiber reinforced plastic(CFRP) composites. To achieve this objective, we introduced specific known damage (in terms of type, size, and location) into CFRP laminates and established quantitative relationships with the electrical resistance measurements. For processing of numerous measurement data, an autonomous data acquisition system was devised. We also established a specimen preparation procedure and a method for electrode setup. Coupon and panel CFRP laminate specimens with several known damage were tested. Coupon specimens with various sizes of artificial delaminations obtained by inserting Teflon film were manufactured and the resistance was measured. The measurement results showed that increase of delamination size led to increase of resistance implying that it is possible to sense the existence and size of delamination. A quasi-isotropic panel was manufactured and electrical resistance was measured. Then three different sizes of holes were drilled at a chosen location. The panel was prepared using the established procedures with six electrode connections on each side making a total of twenty-four electrodes. Vertical, horizontal, and diagonal pairs of electrodes were chosen and the resistance was measured. The measurement results showed the possibility of the established measurement system for an in-situ damage detection method for CFRP composite structures.