• Title/Summary/Keyword: 원격 탐사

Search Result 5,154, Processing Time 0.033 seconds

Classification of Urban Green Space Using Airborne LiDAR and RGB Ortho Imagery Based on Deep Learning (항공 LiDAR 및 RGB 정사 영상을 이용한 딥러닝 기반의 도시녹지 분류)

  • SON, Bokyung;LEE, Yeonsu;IM, Jungho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.83-98
    • /
    • 2021
  • Urban green space is an important component for enhancing urban ecosystem health. Thus, identifying the spatial structure of urban green space is required to manage a healthy urban ecosystem. The Ministry of Environment has provided the level 3 land cover map(the highest (1m) spatial resolution map) with a total of 41 classes since 2010. However, specific urban green information such as street trees was identified just as grassland or even not classified them as a vegetated area in the map. Therefore, this study classified detailed urban green information(i.e., tree, shrub, and grass), not included in the existing level 3 land cover map, using two types of high-resolution(<1m) remote sensing data(i.e., airborne LiDAR and RGB ortho imagery) in Suwon, South Korea. U-Net, one of image segmentation deep learning approaches, was adopted to classify detailed urban green space. A total of three classification models(i.e., LRGB10, LRGB5, and RGB5) were proposed depending on the target number of classes and the types of input data. The average overall accuracies for test sites were 83.40% (LRGB10), 89.44%(LRGB5), and 74.76%(RGB5). Among three models, LRGB5, which uses both airborne LiDAR and RGB ortho imagery with 5 target classes(i.e., tree, shrub, grass, building, and the others), resulted in the best performance. The area ratio of total urban green space(based on trees, shrub, and grass information) for the entire Suwon was 45.61%(LRGB10), 43.47%(LRGB5), and 44.22%(RGB5). All models were able to provide additional 13.40% of urban tree information on average when compared to the existing level 3 land cover map. Moreover, these urban green classification results are expected to be utilized in various urban green studies or decision making processes, as it provides detailed information on urban green space.

Comparative Research of Image Classification and Image Segmentation Methods for Mapping Rural Roads Using a High-resolution Satellite Image (고해상도 위성영상을 이용한 농촌 도로 매핑을 위한 영상 분류 및 영상 분할 방법 비교에 관한 연구)

  • CHOUNG, Yun-Jae;GU, Bon-Yup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.73-82
    • /
    • 2021
  • Rural roads are the significant infrastructure for developing and managing the rural areas, hence the utilization of the remote sensing datasets for managing the rural roads is necessary for expanding the rural transportation infrastructure and improving the life quality of the rural residents. In this research, the two different methods such as image classification and image segmentation were compared for mapping the rural road based on the given high-resolution satellite image acquired in the rural areas. In the image classification method, the deep learning with the multiple neural networks was employed to the given high-resolution satellite image for generating the object classification map, then the rural roads were mapped by extracting the road objects from the generated object classification map. In the image segmentation method, the multiresolution segmentation was employed to the same satellite image for generating the segment image, then the rural roads were mapped by merging the road objects located on the rural roads on the satellite image. We used the 100 checkpoints for assessing the accuracy of the two rural roads mapped by the different methods and drew the following conclusions. The image segmentation method had the better performance than the image classification method for mapping the rural roads using the give satellite image, because some of the rural roads mapped by the image classification method were not identified due to the miclassification errors occurred in the object classification map, while all of the rural roads mapped by the image segmentation method were identified. However some of the rural roads mapped by the image segmentation method also had the miclassfication errors due to some rural road segments including the non-rural road objects. In future research the object-oriented classification or the convolutional neural networks widely used for detecting the precise objects from the image sources would be used for improving the accuracy of the rural roads using the high-resolution satellite image.

Overview and Prospective of Satellite Chlorophyll-a Concentration Retrieval Algorithms Suitable for Coastal Turbid Sea Waters (연안 혼탁 해수에 적합한 위성 클로로필-a 농도 산출 알고리즘 개관과 전망)

  • Park, Ji-Eun;Park, Kyung-Ae;Lee, Ji-Hyun
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.247-263
    • /
    • 2021
  • Climate change has been accelerating in coastal waters recently; therefore, the importance of coastal environmental monitoring is also increasing. Chlorophyll-a concentration, an important marine variable, in the surface layer of the global ocean has been retrieved for decades through various ocean color satellites and utilized in various research fields. However, the commonly used chlorophyll-a concentration algorithm is only suitable for application in clear water and cannot be applied to turbid waters because significant errors are caused by differences in their distinct components and optical properties. In addition, designing a standard algorithm for coastal waters is difficult because of differences in various optical characteristics depending on the coastal area. To overcome this problem, various algorithms have been developed and used considering the components and the variations in the optical properties of coastal waters with high turbidity. Chlorophyll-a concentration retrieval algorithms can be categorized into empirical algorithms, semi-analytic algorithms, and machine learning algorithms. These algorithms mainly use the blue-green band ratio based on the reflective spectrum of sea water as the basic form. In constrast, algorithms developed for turbid water utilizes the green-red band ratio, the red-near-infrared band ratio, and the inherent optical properties to compensate for the effect of dissolved organisms and suspended sediments in coastal area. Reliable retrieval of satellite chlorophyll-a concentration from turbid waters is essential for monitoring the coastal environment and understanding changes in the marine ecosystem. Therefore, this study summarizes the pre-existing algorithms that have been utilized for monitoring turbid Case 2 water and presents the problems associated with the mornitoring and study of seas around the Korean Peninsula. We also summarize the prospective for future ocean color satellites, which can yield more accurate and diverse results regarding the ecological environment with the development of multi-spectral and hyperspectral sensors.

Temperature and Solar Radiation Prediction Performance of High-resolution KMAPP Model in Agricultural Areas: Clear Sky Case Studies in Cheorwon and Jeonbuk Province (고해상도 규모상세화모델 KMAPP의 농업지역 기온 및 일사량 예측 성능: 맑은 날 철원 및 전북 사례 연구)

  • Shin, Seoleun;Lee, Seung-Jae;Noh, Ilseok;Kim, Soo-Hyun;So, Yun-Young;Lee, Seoyeon;Min, Byung Hoon;Kim, Kyu Rang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.312-326
    • /
    • 2020
  • Generation of weather forecasts at 100 m resolution through a statistical downscaling process was implemented by Korea Meteorological Administration Post- Processing (KMAPP) system. The KMAPP data started to be used in various industries such as hydrologic, agricultural, and renewable energy, sports, etc. Cheorwon area and Jeonbuk area have horizontal planes in a relatively wide range in Korea, where there are many complex mountainous areas. Cheorwon, which has a large number of in-situ and remotely sensed phenological data over large-scale rice paddy cultivation areas, is considered as an appropriate area for verifying KMAPP prediction performance in agricultural areas. In this study, the performance of predicting KMAPP temperature changes according to ecological changes in agricultural areas in Cheorwon was compared and verified using KMA and National Center for AgroMeteorology (NCAM) observations. Also, during the heat wave in Jeonbuk Province, solar radiation forecast was verified using Automated Synoptic Observing System (ASOS) data to review the usefulness of KMAPP forecast data as input data for application models such as livestock heat stress models. Although there is a limit to the need for more cases to be collected and selected, the improvement in post-harvest temperature forecasting performance in agricultural areas over ordinary residential areas has led to indirect guesses of the biophysical and phenological effects on forecasting accuracy. In the case of solar radiation prediction, it is expected that KMAPP data will be used in the application model as detailed regional forecast data, as it tends to be consistent with observed values, although errors are inevitable due to human activity in agricultural land and data unit conversion.

Trends in QA/QC of Phytoplankton Data for Marine Ecosystem Monitoring (해양생태계 모니터링을 위한 식물플랑크톤 자료의 정도 관리 동향)

  • YIH, WONHO;PARK, JONG WOO;SEONG, KYEONG AH;PARK, JONG-GYU;YOO, YEONG DU;KIM, HYUNG SEOP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.3
    • /
    • pp.220-237
    • /
    • 2021
  • Since the functional importance of marine phytoplankton was firstly advocated from early 1880s massive data on the species composition and abundance were produced by classical microscopic observation and the advanced auto-imaging technologies. Recently, pigment composition resulted from direct chemical analysis of phytoplankton samples or indirect remote sensing could be used for the group-specific quantification, which leads us to more diversified data production methods and for more improved spatiotemporal accessibilities to the target data-gathering points. In quite a few cases of many long-term marine ecosystem monitoring programs the phytoplankton species composition and abundance was included as a basic monitoring item. The phytoplankton data could be utilized as a crucial evidence for the long-term change in phytoplankton community structure and ecological functioning at the monitoring stations. Usability of the phytoplankton data sometimes is restricted by the differences in data producers throughout the whole monitoring period. Methods for sample treatments, analyses, and species identification of the phytoplankton species could be inconsistent among the different data producers and the monitoring years. In-depth study to determine the precise quantitative values of the phytoplankton species composition and abundance might be begun by Victor Hensen in late 1880s. International discussion on the quality assurance of the marine phytoplankton data began in 1969 by the SCOR Working Group 33 of ICSU. Final report of the Working group in 1974 (UNESCO Technical Papers in Marine Science 18) was later revised and published as the UNESCO Monographs on oceanographic methodology 6. The BEQUALM project, the former body of IPI (International Phytoplankton Intercomparison) for marine phytoplankton data QA/QC under ISO standard, was initiated in late 1990. The IPI is promoting international collaboration for all the participating countries to apply the QA/QC standard established from the 20 years long experience and practices. In Korea, however, such a QA/QC standard for marine phytoplankton species composition and abundance data is not well established by law, whereas that for marine chemical data from measurements and analysis has been already set up and managed. The first priority might be to establish a QA/QC standard system for species composition and abundance data of marine phytoplankton, then to be extended to other functional groups at the higher consumer level of marine food webs.

Analysis of Literatures Related to Crop Growth and Yield of Onion and Garlic Using Text-mining Approaches for Develop Productivity Prediction Models (양파·마늘 생산성 예측 모델 개발을 위한 텍스트마이닝 기법 활용 생육 및 수량 관련 문헌 분석)

  • Kim, Jin-Hee;Kim, Dae-Jun;Seo, Bo-Hun;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.374-390
    • /
    • 2021
  • Growth and yield of field vegetable crops would be affected by climate conditions, which cause a relatively large fluctuation in crop production and consumer price over years. The yield prediction system for these crops would support decision-making on policies to manage supply and demands. The objectives of this study were to compile literatures related to onion and garlic and to perform data-mining analysis, which would shed lights on the development of crop models for these major field vegetable crops in Korea. The literatures on crop growth and yield were collected from the databases operated by Research Information Sharing Service, National Science & Technology Information Service and SCOPUS. The keywords were chosen to retrieve research outcomes related to crop growth and yield of onion and garlic. These literatures were analyzed using text mining approaches including word cloud and semantic networks. It was found that the number of publications was considerably less for the field vegetable crops compared with rice. Still, specific patterns between previous research outcomes were identified using the text mining methods. For example, climate change and remote sensing were major topics of interest for growth and yield of onion and garlic. The impact of temperature and irrigation on crop growth was also assessed in the previous studies. It was also found that yield of onion and garlic would be affected by both environment and crop management conditions including sowing time, variety, seed treatment method, irrigation interval, fertilization amount and fertilizer composition. For meteorological conditions, temperature, precipitation, solar radiation and humidity were found to be the major factors in the literatures. These indicate that crop models need to take into account both environmental and crop management practices for reliable prediction of crop yield.

Extraction of Water Body Area using Micro Satellite SAR: A Case Study of the Daecheng Dam of South korea (초소형 SAR 위성을 활용한 수체면적 추출: 대청댐 유역 대상)

  • PARK, Jongsoo;KANG, Ki-Mook;HWANG, Eui-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.41-54
    • /
    • 2021
  • It is very essential to estimate the water body area using remote exploration for water resource management, analysis and prediction of water disaster damage. Hydrophysical detection using satellites has been mainly performed on large satellites equipped with optical and SAR sensors. However, due to the long repeat cycle, there is a limitation that timely utilization is impossible in the event of a disaster/disaster. With the recent active development of Micro satellites, it has served as an opportunity to overcome the limitations of time resolution centered on existing large satellites. The Micro satellites currently in active operation are ICEYE in Finland and Capella satellites in the United States, and are operated in the form of clusters for earth observation purposes. Due to clustering operation, it has a short revisit cycle and high resolution and has the advantage of being able to observe regardless of weather or day and night with the SAR sensor mounted. In this study, the operation status and characteristics of micro satellites were described, and the water area estimation technology optimized for micro SAR satellite images was applied to the Daecheong Dam basin on the Korean Peninsula. In addition, accuracy verification was performed based on the reference value of the water generated from the optical satellite Sentinel-2 satellite as a reference. In the case of the Capella satellite, the smallest difference in area was shown, and it was confirmed that all three images showed high correlation. Through the results of this study, it was confirmed that despite the low NESZ of Micro satellites, it is possible to estimate the water area, and it is believed that the limitations of water resource/water disaster monitoring using existing large SAR satellites can be overcome.

Comparison of rainfall-runoff performance based on various gridded precipitation datasets in the Mekong River basin (메콩강 유역의 격자형 강수 자료에 의한 강우-유출 모의 성능 비교·분석)

  • Kim, Younghun;Le, Xuan-Hien;Jung, Sungho;Yeon, Minho;Lee, Gihae
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.75-89
    • /
    • 2023
  • As the Mekong River basin is a nationally shared river, it is difficult to collect precipitation data, and the quantitative and qualitative quality of the data sets differs from country to country, which may increase the uncertainty of hydrological analysis results. Recently, with the development of remote sensing technology, it has become easier to obtain grid-based precipitation products(GPPs), and various hydrological analysis studies have been conducted in unmeasured or large watersheds using GPPs. In this study, rainfall-runoff simulation in the Mekong River basin was conducted using the SWAT model, which is a quasi-distribution model with three satellite GPPs (TRMM, GSMaP, PERSIANN-CDR) and two GPPs (APHRODITE, GPCC). Four water level stations, Luang Prabang, Pakse, Stung Treng, and Kratie, which are major outlets of the main Mekong River, were selected, and the parameters of the SWAT model were calibrated using APHRODITE as an observation value for the period from 2001 to 2011 and runoff simulations were verified for the period form 2012 to 2013. In addition, using the ConvAE, a convolutional neural network model, spatio-temporal correction of original satellite precipitation products was performed, and rainfall-runoff performances were compared before and after correction of satellite precipitation products. The original satellite precipitation products and GPCC showed a quantitatively under- or over-estimated or spatially very different pattern compared to APHPRODITE, whereas, in the case of satellite precipitation prodcuts corrected using ConvAE, spatial correlation was dramatically improved. In the case of runoff simulation, the runoff simulation results using the satellite precipitation products corrected by ConvAE for all the outlets have significantly improved accuracy than the runoff results using original satellite precipitation products. Therefore, the bias correction technique using the ConvAE technique presented in this study can be applied in various hydrological analysis for large watersheds where rain guage network is not dense.

Comparative Study on the Carbon Stock Changes Measurement Methodologies of Perennial Woody Crops-focusing on Overseas Cases (다년생 목본작물의 탄소축적 변화량 산정방법론 비교 연구-해외사례를 중심으로)

  • Hae-In Lee;Yong-Ju Lee;Kyeong-Hak Lee;Chang-Bae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.258-266
    • /
    • 2023
  • This study analyzed methodologies for estimating carbon stocks of perennial woody crops and the research cases in overseas countries. As a result, we found that Australia, Bulgaria, Canada, and Japan are using the stock-difference method, while Austria, Denmark, and Germany are estimating the change in the carbon stock based on the gain-loss method. In some overseas countries, the researches were conducted on estimating the carbon stock change using image data as tier 3 phase beyond the research developing country-specific factors as tier 2 phase. In South Korea, convergence studies as the third stage were conducted in forestry field, but advanced research in the agricultural field is at the beginning stage. Based on these results, we suggest directions for the following four future researches: 1) securing national-specific factors related to emissions and removals in the agricultural field through the development of allometric equation and carbon conversion factors for perennial woody crops to improve the completeness of emission and removals statistics, 2) implementing policy studies on the cultivation area calculation refinement with fruit tree-biomass-based maturity, 3) developing a more advanced estimation technique for perennial woody crops in the agricultural sector using allometric equation and remote sensing techniques based on the agricultural and forestry satellite scheduled to be launched in 2025, and to establish a matrix and monitoring system for perennial woody crop cultivation areas in the agricultural sector, Lastly, 4) estimating soil carbon stocks change, which is currently estimated by treating all agricultural areas as one, by sub-land classification to implement a dynamic carbon cycle model. This study suggests a detailed guideline and advanced methods of carbon stock change calculation for perennial woody crops, which supports 2050 Carbon Neutral Strategy of Ministry of Agriculture, Food, and Rural Affairs and activate related research in agricultural sector.

Survey on the distribution of ancient tombs using LiDAR measurement method (라이다(LiDAR) 측량기법을 활용한 고분분포현황 조사)

  • SIM Hyeoncheol
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.54-70
    • /
    • 2023
  • Surveys and studies on cultural assets using LiDAR measurement are already active overseas. Recently, awareness of the advantages and availability of LiDAR measurement has increased in Korea, and cases of using it for surveys of cultural assets are gradually increasing. However, it is usually restricted to surveys of mountain fortresses and is not actively used for surveys of ancient tombs yet. Therefore, this study intends to emphasize the need to secure fundamental data from LiDAR measurement for the era from the Three Kingdoms to Unified Silla in which recovery, maintenance, etc., in addition to the actual surveys, are unfulfilled due to the sites being mainly distributed in mountainous areas. For this, LiDAR measurement was executed for the area of Jangsan Ancient Tombs and Chunghyo-dong Ancient Tombs in Seoak-dong, Gyeongju, to review the distribution and geographical conditions of ancient tombs. As a result, in the Jangsan Ancient Tombs, in which a precision archaeological (measurement) survey was already executed, detailed geographic information and distribution conditions could be additionally identified, which could not be known only with the layout indicated by the topographic map of the existing report. Also, in the Chunghyo-dong Ancient Tombs, in which an additional survey was not conducted after 10 tombs were found during the Japanese colonial period, the location of the ancient tombs initially excavated was accurately identified, and the status and additional information was acquired, such as on the conditions of ancient tombs not surveyed. Such information may also be used as fundamental data for the preservation and maintenance of future ancient tombs in addition to the survey and study of the ancient tombs themselves. LiDAR measurement is most effective for identifying the condition of ancient tombs in mountainous areas where observation is difficult or access is limited due to the forest zone. It may be executed before on-site surveys, such as archaeological surveys, to secure data with high availability as prior surveys or pre-surveys. Therefore, it is necessary to secure fundamental data from LiDAR measurement in future surveys of ancient tombs and to establish a survey and maintenance/utilization plan based on this. To establish survey/study and preservation/maintenance measures for ancient tombs located in mountainous areas, a precision archaeological survey is currently executed to draw up a distribution chart of ancient tombs. If LiDAR measurement data is secured before this and used, a more effective and accurate distribution chart can be drawn up, and the actual conditions can be identified. Also, most omissions or errors in information can be prevented in on-site surveys of large regions. Therefore, it is necessary to accumulate fundamental data by actively using LiDAR measurement in future surveys of ancient tombs.