• Title/Summary/Keyword: 원격실험실

Search Result 55, Processing Time 0.018 seconds

The Development of the Medical Information's Transmission System Using the Bluetooth (블루투스 통신을 이용한 의료정보 전송 시스템의 개발)

  • Hong, Seung-Beom;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.787-792
    • /
    • 2009
  • A number of very promising applications such as health monitoring and U-Health of ubiquitous techniques has attracted interest in recent years. Because it can observes the condition of patient from long distance using the equipment which combines with radio communication and medical monitoring system. If it is at emergency situation, it can disposes the condition of the patient. In this paper, we propose the new data format and the transmission communication system of combination medical information with the bluetooth. And we produce the on-board system which transmits the medical information. This system integrated the blood pressure and glucose monitor of personal medical equipment, and the medical information which obtained from on-board system acquires through the gateway with the bluetooth. Medical information is transmitted to the tele-monitor server by the wireline network. We evaluated the proposed system under the laboratory environment and confirmed the excellent performance of transmission of the medical information.

  • PDF

Monitoring of Floating Green Algae Using Ocean Color Satellite Remote Sensing (해색위성 원격탐사를 이용한 부유성 녹조 모니터링)

  • Lee, Kwon-Ho;Lee, So-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.137-147
    • /
    • 2012
  • Recently, floating green algae (FGA) in open oceans and coastal waters have been reported over wide area, yet accurate detection of these using traditional ground based measurement and chemical analysis in the laboratory has been difficult or even impossible due to the lack of spatial resolution, coverage, and revisit frequency. In contrast, spectral reflectance measurement makes it possible to quickly assess the chlorophyll content in green algae. Our objectives are to investigate the spectral reflectance of the FGA observed in the Yellow Sea and to develop a new index to detect FGA from satellite imagery, namely floating green algae index (FGAI), which uses relatively simple reflectance ratio technique. The Moderate Resolution Imaging Spectroradiometer (MODIS) and Geostationary Ocean Color Imager (GOCI) satellite images at 500m spatial resolution were utilized to produce FGAI which is defined as the ratio between reflectance at 860nm and 660nm bands. Both FGAI results yielded reasonable green algae detection at the regional scale distribution. Especially houly GOCI observations can present more detaield information of FGAI than low-orbit satellite.

A Study on Optical Properties of Red Tide Algal Species (적조 원격탐사 기술 개발을 위한 적조생물의 광특성 연구)

  • Lee, Nu-Ri;Moon, Jeong-Eon;Ahn, Yu-Hwan;Yang, Chan-Su;Yoon, Hong-Joo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.187-191
    • /
    • 2006
  • This research is about the optical characteristics of algae which is collected from Nam-Hae for basic research of red tide remote sensing technique development 21 kinds of red tide organisms were cultivated to investigate optical characteristics of them in the level of laboratory, and chlorophyll specific absorption coefficient $(a^*)$ and backscattering coefficient $(b_b^*)$ are estimated by using spectrophotometer. Absorption spectrums according to species appeared to range from 0.005 to 0.06 $(m^2/mg)$, and the shapes of spectrums were also different. The range of $b_b^*$ appeared to be $10^{-2}\sim10^{-4}m^2/mg$, which had about 100 times differences between species, and the shape of spectrum have significant difference between species. These results will input as an ocean color model input parameter from ocean color.

  • PDF

Inherent Optical Properties of Red Tide Algal for Ocean Color Remote Sensing Application (해색원격탐사 활용을 위한 적조생물종 고유 광특성 연구)

  • Ahn, Yu-Hwan;Moon, Jeong-Eon;Seo, Won-Chan;Yoon, Hong-Joo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.1
    • /
    • pp.47-54
    • /
    • 2009
  • This research is about the inherent optical properties(IOPs) of algae which is collected from Nam-Hae for basic research of red tide remote sensing technique development. 21 kinds of red tide organisms were cultivated to investigate IOPs of them in the level of laboratory, and specific absorption coefficient of phytoplankton($a^*$) and backscattering coefficient of phytoplankton(${b_b}^*$) are estimated by using spectrophotometer. Absorption spectrums according to species appeared to range from 0.005 to 0.06 ($m^2{\cdot}mg^{-1}$), and the shapes of spectrums were also different. The range of ${b_b}^*$ appeared to be $10^{-2}{\sim}10^{-4}\;m^2{\cdot}mg^{-1}$, which had about 100 times differences between species, and the shape of spectrum have significant difference between species. These results will input as a remote sensing reflectance model input parameter from ocean color.

  • PDF

Review of applicability of Turbidity-SS relationship in hyperspectral imaging-based turbid water monitoring (초분광영상 기반 탁수 모니터링에서의 탁도-SS 관계식 적용성 검토)

  • Kim, Jongmin;Kim, Gwang Soo;Kwon, Siyoon;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.919-928
    • /
    • 2023
  • Rainfall characteristics in Korea are concentrated during the summer flood season. In particular, when a large amount of turbid water flows into the dam due to the increasing trend of concentrated rainfall due to abnormal rainfall and abnormal weather conditions, prolonged turbid water phenomenon occurs due to the overturning phenomenon. Much research is being conducted on turbid water prediction to solve these problems. To predict turbid water, turbid water data from the upstream inflow is required, but spatial and temporal data resolution is currently insufficient. To improve temporal resolution, the development of the Turbidity-SS conversion equation is necessary, and to improve spatial resolution, multi-item water quality measurement instrument (YSI), Laser In-Situ Scattering and Transmissometry (LISST), and hyperspectral sensors are needed. Sensor-based measurement can improve the spatial resolution of turbid water by measuring line and surface unit data. In addition, in the case of LISST-200X, it is possible to collect data on particle size, etc., so it can be used in the Turbidity-SS conversion equation for fraction (Clay: Silt: Sand). In addition, among recent remote sensing methods, the spatial distribution of turbid water can be presented when using UAVs with higher spatial and temporal resolutions than other payloads and hyperspectral sensors with high spectral and radiometric resolutions. Therefore, in this study, the Turbidity-SS conversion equation was calculated according to the fraction through laboratory analysis using LISST-200X and YSI-EXO, and sensor-based field measurements including UAV (Matrice 600) and hyperspectral sensor (microHSI 410 SHARK) were used. Through this, the spatial distribution of turbidity and suspended sediment concentration, and the turbidity calculated using the Turbidity-SS conversion equation based on the measured suspended sediment concentration, was presented. Through this, we attempted to review the applicability of the Turbidity-SS conversion equation and understand the current status of turbid water occurrence.