• Title/Summary/Keyword: 워터튜브

Search Result 5, Processing Time 0.019 seconds

Experiment and Evaluation of Mist Diffusion from Water Tube for Blasting Dust Control in accordance with the Explosives Position (폭약 기폭위치에 따른 발파 분진제어용 워터튜브 주입수의 분무확산 실험 및 평가)

  • Yang, Hyung-Sik;Ko, Young-Hun;Kim, Jung-Gyu;Noh, You-Song;Park, Hoon;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.46-55
    • /
    • 2015
  • A water tube with detonating cord was devised to control the blast dust. Water diffusion experiments with different detonating cord positions were conducted during the series of experiments to optimize the design parameters of the tube. Images from high speed camera were analyzed to evaluate the results. AUTODYN program was adopted to simulate the diffusion process of water and compared with the images. Diffusion of water shows cross flow in case of external charge while the internal case shows radial flow. A bubble ring was formed during the numerical analysis of internal charge case as occurred in underwater blast. An additional bubble ring was formed by the reflection pressure from the ground. And the Weber number was determined as sufficient for spray atomization performance of the water tube.

A Heatmap-based Leakage Location Estimation Algorithm for Circulating Fluidized Bed Boiler Tube Using Acoustic Emission Sensors (음향방출 센서를 이용한 히트맵기반 순환유동층 보일러 튜브 누설 위치 추정 알고리즘)

  • Kim, Jaeyoung;Kim, Jong-Myon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.51-52
    • /
    • 2018
  • 화력발전용 순환유동층 보일러는 환경오염의 주요인인 질소산화물(NOx)과 황산화물(SOx)의 배출량이 적은 친환경 화력발전용 보일러로 화력발전 업계에서 각광받고 있는 추세이다. 그러나 순환유동층 보일러의 연료인 유동매체는 미분탄과 같이 작지만 단단한 고체이므로 유동매체의 타격으로 인해 워터월(waterwall) 튜브의 마모는 물론 누설까지 야기할 수 있다. 순환유동층 보일러 튜브에서 누설된 증기는 보일러 내부에 클링커(Clinker)를 발생시키고 이는 순환유동층 보일러 튜브 표면에 응고되어 열전도율을 감소시킬 뿐만 아니라 보일러 운전정지의 원인이 된다. 따라서 본 논문에서는 음향방출 센서를 이용하여 화력발전용 순환유동층 보일러 튜브의 누설 위치를 추정하는 방법을 제안한다. 제안 방법에서는 매질의 분자단위 이동에 의해 발생되는 탄성파를 감지할 수 있는 음향방출 센서를 이용하고, 보일러 워터월 튜브의 멤브레인 용접부와 비용접부(seamless)의 감쇠율을 고려한 위치별 센서 감도 추정 알고리즘을 통해 워터월 튜브의 위치별 진폭 크기를 히트맵으로 표현할 수 있다.

  • PDF

Waterjet Propulsion Model Experiment for Catamaran Ship (쌍동선의 워터제트 추진 모형시험)

  • Choi, G.I.;Min, K.S.;Ann, Y.W.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.65-76
    • /
    • 1996
  • A screw propeller is usually accepted as a propulsor of many kinds of ships. However, for high speed vessels, screw propeller has large cavitation area on the blades so propeller efficiency is decreased and erosion can be happened. To avoid this problem, supercavitating propeller and waterjet are generally used for high speed vessels. In this paper, we introduced the self-propulsion test procedure which has been developed for high speed vessels in Hyundai Maritime Research Institute. The model ship used in experiment represents catamaran about 5.3 m in length. To minimize the experimental errors, two impellers were driven by a single motor. Thrust was calculated by converting the measured pressure to flow rates at the nozzle exit. The test procedure is composed of resistance test, self propulsion test and analysis. In order to measure the pressure, pressure tabs were installed around the nozzle exit and connected to the pressure sensor by vinyl tube.

  • PDF

Development of Noise-proof Facility Considered with Soundproofing Materials in a Tunnel Blasting (터널 발파에서 방음재질을 고려한 방음문 개발에 관한 연구)

  • Jeoung, Jae-Hyeung;Won, Yeon-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.27-35
    • /
    • 2011
  • This study investigated a sound reduction degree by each soundproofing materials and the sound pressure level of a main frequency range to develop soundproofing facilities installed for reducing sound in a tunnel blasting. The frequency range and sound pressure level of soundproofing materials(eg. sand and water etc.) mainly used at a working spot were measured using the experimental apparatus considered with blasting situation. The full scale pilot test was also carried out using developed soundproofing facilities in this study. And the performance of developed soundproofing facilities was analyzed. As a result, the developed soundproofing facilities using water in sound insulation materials could reduce about 10dB(A) of blasting noise in compare with the existing soundproofing facilities.