• Title/Summary/Keyword: 운전제어

Search Result 2,046, Processing Time 0.027 seconds

Stationary Reference Frame Voltage Controller for Single Phase Grid Connected Inverter for Stand Alone Mode (계통 연계형 단상 인버터의 단독 운전 모드를 위한 정지좌표계 전압 제어기)

  • Hong, Chang-Pyo;Kim, Hag-Wone;Cho, Kwan-Yuhl;Lim, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.517-525
    • /
    • 2015
  • A grid connected inverter must be operated as the main electricity source under an isolated condition caused by the grid problem. Conventionally, the dual loop controller is used for the grid inverter, and the controller is used for control under the stand-alone mode. Generally, the PI(Proportional - Integral) controller is highly efficient under a synchronous reference frame, and stable control can be available. However, in this synchronous frame-based control, high-quality DSP is required because many sinusoidal calculations are necessary. When the PI control is conducted under a stationary frame, the controller constructions are made simple so that they work even with a low-price micro controller. However, given the characteristics of the PI controller, it should be designed with the phase of reference voltage considered. Otherwise, the phase delay of the output voltage can occur. Although the current controller also has a higher bandwidth than the voltage controller, distortion of the voltage is difficult to avoid only by the rapid response of the PI controller, as a sudden load change can occur in the nonlinear load. In this study, a new control method that solves the voltage controller bandwidth problem and rapidly copes with it even in the nonlinear load situation is proposed. The validity of the proposed method is proved by simulation and experimental results.

Effects of Aromatics and T90 Temperature of Low Cetane Number Fuels on Exhaust Emissions in Low-Temperature Diesel Combustion (저온디젤연소에서 저세탄가 연료의 방향족 및 T90 온도가 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1121-1126
    • /
    • 2010
  • This study is to investigate the effects of aromatics and T90 for low cetane number (CN) fuels on combustion and exhaust emissions in low-temperature diesel combustion. We use a 1.9-L common rail direct injection diesel engine at 1500 rpm and 2.6 bar BMEP. Low temperature diesel combustion was achieved via a high external EGR rate and strategic injection control. The tested fuels four sets: the aromatic content was 20% (A20) or 45% (A45) and the T90 temperature was $270^{\circ}C$ (T270) or $340^{\circ}C$ (T340) with CN 30. Given the engine operating conditions, the T90 was the stronger factor on the ignition delay time, resulting in a longer ignition delay time for higher T90 fuels. All the fuels produced nearly zero PM because of the extension of the ignition delay time induced by the low cetane number. The aromatic content was the main factor that affected the NOx and the NOx increased with the aromatic content.

A Study on the Control Algorithm for Engine Clutch Engagement During Mode Change of Plug-in Hybrid Electric Vehicles (플러그인 하이브리드 차량의 모드변환에 따른 엔진클러치 접합 제어알고리즘 연구)

  • Sim, Kyuhyun;Lee, Suji;Namkoong, Choul;Lee, Ji-Suk;Han, Kwan-Soo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.801-805
    • /
    • 2016
  • In this paper, engine clutch engagement shock is analyzed during the mode change of plug-in hybrid electric vehicles. Multi-driving mode includes the EV (electric vehicle) mode, HEV (hybrid electric vehicle) mode, and engine operating mode. Depending on the mode change, the engine clutch is either engaged or disengaged. The magnitude of shock during clutch engagement is very important because it impacts vehicle acceleration and clutch synchronization speed, which affects ride comfort substantially. The performance simulator of plug-in hybrid electric vehicles was developed using MATLAB/Simulink. The simulation results show that the mode change control algorithm is necessary for minimizing shock during clutch engagement.

A Study on the Performance and Dehumidification Load of an HVAC System for Conservation of Ancient Tombs (고분 공조시스템의 운전특성 및 제습부하에 관한 연구)

  • Park, Jin-Yang;Ko, Seok-Bo;Jun, Hee-Ho;Jun, Yong-Du;Lee, Kum-Bae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.253-262
    • /
    • 2007
  • Although the importance of good conservation of historical sites including ancient royal tombs is well aware, still not much attention has been paid for facilities to realize it. There are numerous ancient royal tombs spread in Korean peninsula which are opened and some of them are selectively on display for public access. However, the conservation measures of these sites have not been seriously investigated. Even the level of understanding of the underground environment of tombs is not satisfactory. In the present study, we focus on the dehumidification loads to maintain appropriate conservation conditions in terms of temperature and humidity. Two experimental tombs different in size were built in KNU (Kongju National University) campus with the dimensions ($L{\times}W{\times}H$) of $1.0m{\times}2.8m{\times}1.0m\;and\;1.3m{\times}3.0m{\time}1.2m$, respectively, HVAC systems are installed to maintain a suitable condition for conservation, i.e., $22{\pm}2^{\circ}C$ in temperature and $55{\pm}5%$ in relative humidity. The condensed water are measured to estimate the dehumidification loads while the temperature and the humidity inside the tombs were maintained within the specified range.

A study of the train traffic optimal control system in a circular metro line (도시형 순환 열차에서 운전 최적제어 시스템에 관한 연구)

  • Hong, Hyo-Sik;Ryu, Kwang-Gyun;Song, Noon-Suck
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.236-246
    • /
    • 2003
  • This paper is implemented a control algorithm in order to be stable and minimized to entire train traffic system at delayed case. Signal ing system is described wi th algebraic equations given for train headway, Discrete-event simulation principles are reviewed and a demonstration block signaling model using the technique is implemented. Train congestion at station entrance for short headway operation is demonstrated and the propagation of delays along a platform of trains from any imposed delay to the leading train is also shown. A rail way signaling system is by nature a distributed operation with event triggered at discrete intervals. Although the train kinematic variables of position, velocity, and acceleration are continually changing, the changes are triggered when the trains pass over section boundaries and arrive at signals and route switches. This paper deals with linear-mode1ing, stability and optimal control for the traffic on such metro line of the model is reconstructed in order to adapt the circuits. This paper propose optimal control laws wi th state feedback ensuring the stability of the modeled system for circuits. Simulation results show the benefit to be expected from an efficient traffic control. The main results are summarized as follows: 1. In this paper we develop a linear model describing the traffic for both loop lines, two state space equations have been analyzed. The first one is adapted to the situation where a complete nominal time schedule is available while second one is adapted when only the nominal time interval between trains is known, in both cases we show the unstability of the traffic when the proceeding train is delayed following properties, - They are easily implemented at law cost on existing lines. - They ensure the exponetial stability of loop system. 2. These control laws have been tested on a traffic simulation software taking into the non-linearites and the physical constraints on a metro line. By means of simulation, the efficiency of the proposed optimal control laws are shown.

  • PDF

Seismic Response Comparative Evaluation Study on Floor Isolation using LRB and FPS in Main Control Room of Nuclear Power Plant (LRB, FPS 지진격리시스템의 지진응답특성 비교연구)

  • Lee, Kyung-Jin;Ham, Kyung-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.15-23
    • /
    • 2009
  • An experimental study was performed to evaluate seismic reduction performance and the applicability of 2-dimensional floor isolation system to the main control room of a nuclear power plant. A lead-rubber bearing (LRB) and a friction pendulum system (FPS) were designed and fabricated for a 2-dimensional floor isolation system. A partial experimental model of a main control room with the LRB and FPS was tested using a shaking table. The experimental model consisted of a control panel, a 2.5m${\times}$2.5m access floor, and four LRB and FPS. The artificial time histories based on the horizontal floor response spectrums (OBE, SSE) of the main control room were used as earthquake input signals. Compared to the non-isolated system, the seismic response of experimental models using a 2-dimensional floor isolation system showed considerable seismic reduction performance against an earthquake.

Numerical Analysis on Pressurization System of Smoke Control in Consideration of Stack Effect (연돌효과를 고려한 급기가압 제연시스템의 수치해석 연구)

  • Kim, Jung-Yup
    • Fire Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.1-6
    • /
    • 2013
  • When the pressurization system that uses difference of pressure for smoke control is designed, the factors influencing on the pressure field in building should be applied to design process and the stack effect is one of the main factors. Numerical analysis based on network model in 20-story building is carried out to analyze the pressurization system of smoke control in consideration of stack effect. Calculations are conducted for three conditions, that is, stack effect only, pressurization only and stack effect plus pressurization. Results including the detailed pressure field and flow rate at each floor are represented and the stack effect are effectively visualized. Meanwhile, the pressure of stairwell is increased as much as the summation of the stack effect and pressurization, and the problem induced by rise of pressure is pointed out.

Design of Fuzzy Model-based Multi-objective Controller and Its Application to MAGLEV ATO system (퍼지 모델 기반 다목적 제어기의 설계와 자기부상열차 자동운전시스템에의 적용)

  • 강동오;양세현;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.211-217
    • /
    • 1998
  • Many practical control problems for the complex, uncertain or large-scale plants, need to simultaneously achieve a number of objectives, which may conflict or compete with each other. If the conventional optimization methods are applied to solve these control problems, the solution process may be time-consuming and the resulting solution would ofter lose its original meaning of optimality. Nevertheless, the human operators usually performs satisfactory results based on their qualitative and heuristic knowledge. In this paper, we investigate the control strategies of the human operators, and propose a fuzzy model-based multi-objective satisfactory controller. We also apply it to the automatic train operation(ATO) system for the magnetically levitated vehicles(MAGLEV). One of the human operator's strategies is to predict the control result in order to find the meaningful solution. In this paper, Takagi-Sugeno fuzzy model is used to simulated the prediction procedure. Another str tegy is to evaluate the multiple objectives with respect to their own standards. To realize this strategy, we propose the concept of a satisfactory solution and a satisfactory control scheme. The MAGLEV train is a typical example of the uncertain, complex and large-scale plants. Moreover, the ATO system has to satisfy multiple objectives, such as seed pattern tracking, stop gap accuracy, safety and riding comfort. In this paper, the speed pattern tracking controller and the automatic stop controller of the ATO system is designed based on the proposed control scheme. The effectiveness of the ATO system based on the proposed scheme is shown by the experiments with a rotary test bed and a real MAGLEV train.

  • PDF

Video Based Tail-Lights Status Recognition Algorithm (영상기반 차량 후미등 상태 인식 알고리즘)

  • Kim, Gyu-Yeong;Lee, Geun-Hoo;Do, Jin-Kyu;Park, Keun-Soo;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.10
    • /
    • pp.1443-1449
    • /
    • 2013
  • Automatic detection of vehicles in front is an integral component of many advanced driver-assistance system, such as collision mitigation, automatic cruise control, and automatic head-lamp dimming. Regardless day and night, tail-lights play an important role in vehicle detecting and status recognizing of driving in front. However, some drivers do not know the status of the tail-lights of vehicles. Thus, it is required for drivers to inform status of tail-lights automatically. In this paper, a recognition method of status of tail-lights based on video processing and recognition technology is proposed. Background estimation, optical flow and Euclidean distance is used to detect vehicles entering tollgate. Then saliency map is used to detect tail-lights and recognize their status in the Lab color coordinates. As results of experiments of using tollgate videos, it is shown that the proposed method can be used to inform status of tail-lights.

A Study on the Dynamic Charateristics for Control of Gas-Fueled industrial Gas Boiler(I) (산業용 GAS 보일러의 動特性에 관한 硏究 (I))

  • 임종한;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.965-973
    • /
    • 1992
  • Boilers, which are considered to be one of the basic equipment in industry, consume large potion of nation's petroleum and their demand is growing everyday. In recent, the technology improvement in production of high efficiency boilers and their effective utilization is needed for design of boiler which steam condition is the large capacity of high temperature and high pressure. It is necessary that boiler control system be studied for high efficiency, high reliability and smooth operation. The control of drum pressure and water level particularly becomes an important task for greater accuracy with the avail ability of boiler operation. To achieve this aim, dynamic analysis of a boiler is accomplished by choosing a boiler as a model. Transfer function thus obtained is made a comparison of measurement with reckoning to technical design data. The results of comparison makes it possible to verify thermodynamical analysis on the dynamic behavior of the overall system.