• Title/Summary/Keyword: 운전자 인터페이스

Search Result 62, Processing Time 0.016 seconds

Understanding how agent control based on social status affects user experience factors in multi-user autonomous driving environments (다중 사용자 자율 주행 운전 환경에서 사회적 지위에 따른 에이전트의 제어권이 사용자 경험 요소에 미치는 영향)

  • JiYeon Kim;JuHye Ha;ChangHoon Oh
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.735-745
    • /
    • 2023
  • The purpose of this study is to examine how the control of an agent according to a driver's social status affects user experience factors in a multi-user environment of self-driving vehicles. We conducted a user study where participants viewed four scenarios (route changing/parking x accepting/declining a fellow passenger's command) and answered a survey, followed by a post-hoc interview. Results showed that either the routing scenario or accepting a passenger's command scenario had higher usefulness (convenience, effectiveness, efficiency) than their counterparts. Regardless of the car owner's social status, participants rated AI agents more positively when they met their goals effectively. They also stressed that vehicle owners should always be in control of their agents. This study can provide guidelines for designing future autonomous driving scenarios where an agent interacts with a driver, and passengers.

Considerations on a Transportation Simulation Design Responding to Future Driving (미래 교통환경 변화에 대응하는 교통 모의실험 모형 설계 방향)

  • Kim, Hyoungsoo;Park, Bumjin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.60-68
    • /
    • 2015
  • Recent proliferation of advanced technologies such as wireless communication, mobile, sensor technology and so on has caused significant changes in a traffic environment. Human beings, in particular drivers, as well as roads and vehicles were advanced on information, intelligence and automation thanks to those advanced technologies; Intelligent Transport Systems (ITS) and autonomous vehicles are the results of changes in a traffic environment. This study proposed considerations when designing a simulation model for future transportation environments, which are difficult to predict the change by means of advanced technologies. First of all, approximability, flexibility and scalability were defined as a macroscopic concept for a simulation model design. For actual similarity, calibration is one of the most important steps in simulation, and Physical layer and MAC layer should be considered for the implementation of the communication characteristics. Interface, such as API, for inserting the additional models of future traffic environments should be considered. A flexible design based on compatibility is more important rather than a massive structure with inherent many functions. Distributed computing with optimized H/W and S/W together is required for experimental scale. The results of this study are expected to be used to the design of future traffic simulation.