• Title/Summary/Keyword: 운용비용

Search Result 880, Processing Time 0.028 seconds

A Development of Maintenance Decision Support System for Gas Turbine Engine (가스터빈 엔진 정비 의사결정 지원시스템 개발)

  • Ki, Ja-Young;Kang, Myoung-Cheol;Lee, Myung-Kuk;Rho, Hong-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.586-591
    • /
    • 2012
  • The solution of maintenance decision support system for the gas turbine engine, which is currently operating in GUNSAN combined cycle power plant, was developed and is consist of online monitoring module, periodic performance trending module, optimal compressor washing interval analysis module and hot component management module. Also, GUI platform was applied to this solution for the user to monitoring the analyzed result of engine performance condition and then to make a decision of the consequent maintenance action. In online condition monitoring module, the performance degradation of engine is provided by the analysis of difference between the real time measurement data compared to exist engine performance. The optimal compressor washing interval module produced the washing interval of maximum net profit value by researching the maintenance expense and the loss profit value corresponds to the performance degradation with economic assessment algorithm. Thus, this solution support the user to enable the optimal maintenance and operation of gas turbine engine with overall analysis of engine condition and main information.

  • PDF

A Repository Utilization System to optimize maintenance of IIoT-based main point Utilities (IIoT 기반한 핵심유틸리티의 유지보수 최적화를 위한 공동 활용 시스템)

  • Lee, Byung-Ok;Lee, Kun-Woo;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.89-94
    • /
    • 2021
  • Recently, manufacturing companies are introducing many intelligent production processes that apply IIoT/ICT to improve competitiveness, and a system that maintains availability, improves productivity, and optimizes management costs is needed as a preventive measure using environmental data generated from air ejectors. Therefore, in this study, a dedicated control board was developed and LoRa communication module was applied to remotely control it to collect and manage information about compressors from cloud servers and to ensure that all operators and administrators utilize common data in real time. This dramatically reduced M/S steps, increased system operational availability, and reduced local server operational burden. It dramatically reduced maintenance latency by sharing system failure conditions and dramatically improved cost and space problems by providing real-time status detection through wired and mobile utilization by maintenance personnel.

Research Trend Analysis of Risk Cost Model for UAM Flight Path Planning (UAM 비행 경로 계획을 위한 위험 비용 모델 연구 동향 분석)

  • Jae-Hyeon Kim;Dong-Min Lee;Myeong-Jin Lee;Yeong-Hoon Choi;Ji-Hun Kwon;Jong-Whoa Na
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.68-76
    • /
    • 2024
  • With the recent rapid growth of the domestic and international unmanned aerial vehicle (UAV) market and the increasing importance of UAV operations in urban centers, such as UAMs, the safety management and regulatory framework for human life and property damage caused by UAV failures has been emphasized. In this study, we conducted a comparative analysis of risk-cost models that evaluate the risk of an operating area for safe UAM flight path planning, and identified the main limitations of each model to derive considerations for future model development. By providing a basic model for improving the safety of UAM operations, this study is expected to make an important contribution to technical improvements and policy decisions in the field of UAM flight path planning.

Additional CSP calculation method considering Human Error (휴먼에러를 고려한 추가 CSP 산정 방안)

  • Baek, Sung-Il;Ha, Yun-chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.759-767
    • /
    • 2021
  • Most weapons systems that are Force Integration are expensive equipment that reflects the latest technology, and the operation and maintenance cost is increasing continuously. Factors that efficiently operate and maintain these weapon systems include maintenance plans, economic costs, and repair part requirements. Among them, predicting the repair parts requirements during the life cycle in advance is an important way to increase operation and maintenance cost efficiency and operating availability. The start of requirement analysis for repair parts is a calculation of the CSP (CSP: Concurrent Spare parts, CSP hereafter) that is distributed when the weapon system is deployed. The CSP is an essential component of achieving the operating availability during this period because the weapon system aims to successfully perform a given operation mission without resupply for an initial set period. In the present study, the CSP calculation method was analyzed, reflecting the failure rate and operating time of items, but the analyzed CSP was aimed at preparing for technical failure, but in the initial operating environment, it is limited in coping with unexpected failures caused by human error. The failure is not included in the scope of free maintenance and is a serious factor in making the weapon system inoperable during the initial operation period. To prevent the inoperable status of a weapon system, CSP that considers human error is required in the initial operating environment, and the calculation criteria and measures are proposed.

An Analysis of Haeseong Guided Missile Launcher Reliability Using Naval Field Data (야전운용자료를 활용한 해성 유도무기 발사체계 신뢰도 분석)

  • Hur, Jangwan;Oh, Kyungwon
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.3
    • /
    • pp.39-46
    • /
    • 2017
  • Required military demands for high reliability of weapons systems throughout stages of life cycles as high technologies combined with weapons systems, research and development continue to drive costs upwards. However, for studies on reliability of national defense weapons systems, empirical research is limited because of a lack of interest or limitations relative to data collection. This study proposes a collection process relative to field operating specifications, based on data relative to experience and management collected by visiting vessels onsite, that operate weapons systems. In addition, after drawing the operating MTBF of the launching system for the Haeseong guided missile launcher, this study compared and analyzed that with values predicted during development and identifies parts with low operating values as compared to predicted values. Results of this study relative to maintenance support troops and weapon systems development companies will contribute to maintaining operational deployment of the launching system of the Haeseong guided weapons system.

An ID Mashup Service for the Interoperability of Soundsource Identification Infrastructures (음원 식별체계 상호운용을 위한 식별자 매시업 서비스)

  • Ju, Yong-Wan;Paik, Hyong-Jong;Kim, Yoon-Jung;Song, Cheol-Min;Jung, Eui-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.101-107
    • /
    • 2010
  • As digital environment rapidly changes, various identification infrastructures have been introduced. It inevitably caused the Interoperability issue between the identifiers. Especially, Interoperability issue between the same kinds of identifiers raised the problems such as decreasing usefulness and cost overhead for making bridge system. In this paper, we resolve this issue by suggesting ID mashup service based on XRI. Although both UCI and ICN are the dominant identification infrastructures in the soundsource domain, the modification of identifiers or the requirement of complex system are essential for Interoperability. The ID mashup service suggested in the paper is able to provide interoperable functions to outer world without modifying the structures and resolution service of both identification infrastructures.

한국형발사체개발사업을 위한 EVMS 적용방안에 관한 연구

  • Seo, Gyeon-Su;Choe, Yeong-In;Lee, Hyo-Yeong;Hong, Il-Hui
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.152.1-152.1
    • /
    • 2012
  • 한국형발사체개발사업은 대형복합시스템 사업이며, 장기간에 걸쳐 개발이 진행되는 사업이다. 따라서 사업적, 기술적 측면의 불확실성과 위험 등이 존재하며, 이를 적절히 관리 통제하지 못하면 비용 상승, 일정 지연 및 기술성능 요구조건 등의 불만족을 초래한다. 따라서 개발사업 초기단계에서부터 일정, 비용, 기술성능 및 위험관리 등을 위한 종합적 사업관리시스템 구축 및 운용은 개발사업 성공의 주요 관건이다. 현재 한국형개발사업단에서는 이러한 요구조건을 만족시키기 위한 일환으로써 일정 및 비용에 대한 효과적 관리시스템인 EVMS(Earned Value Management System)을 구축하여 운용 중에 있으며, 한국형개발사업에 맞는 최적화된 EVMS을 구축하기 위하여 시스템 커스터마이징 작업을 수행 중에 있다. EVMS의 구축과정에서 가장 고심했던 문제는 WBS 개발과 성과(Earned Value) 측정방법의 선정이었다. WBS의 경우, 개발초기단계에서부터 사업 전체를 포괄하는 완벽한 WBS을 개발하는 것은 상당히 어려운 문제이다. 그러나 사업초기에 존재하는 불확실성 및 위험에도 불구하고 개발을 계속 진행해야 하는 상황은 개발 현장에서 자주 접하게 되는 문제이다. 이러한 문제를 해결하기 위해서 적용하는 유용한 기법이 연동계획하기(Rolling Wave Planning)이다. 한국형개발사업을 위한 EVMS 구축과정에서도 이와 같은 문제에 봉착하게 되어 WBS 개발 시 연동계획하기(Rolling Wave Planning)기법을 적용할 예정이다. 성과(EV) 측정방법의 경우, 퍼센트완료기법과 마일스톤+퍼센트완료기법 등을 선정하여 적용 중에 있다. 현재 연구개발사업의 특성을 고려하여 우선 퍼센트완료기법을 적용하여 성과를 측정하였으나, 성과측정 결과의 주관성 문제로 인하여 마일스톤+퍼센트완료기법을 적용하여 성과(EV) 측정 결과의 객관성을 최대한 확보 할 예정이며, 최종적으로 한국형개발사업에 최적화된 성과측정 기법을 개발할 예정이다.

  • PDF

Effects of Ecologically Sound Substrates on Growth and Yield of Tomato(Lycopersicon esculentum Mill.) in Bag Culture (자루재배용 배지종류가 토마토 생육, 수량 및 품질에 미치는 영향)

  • 이용범;박권우;노미영;채의석;박소홍;김수현
    • Journal of Bio-Environment Control
    • /
    • v.2 no.1
    • /
    • pp.37-45
    • /
    • 1993
  • The purpose of this research was to develop ideal substrates for the production of good quality tomatoes in bag culture system and also to improve media with low or no environmental pollution by blending and mixing artificial substrate including peatmoss, perlite, vermiculite, granular rockwool, polyphenol resin foam, bark, and smoked rice hull. The highly efficient media proved by experiments were vermiculite, smoked rice hull, polyphenol resin foam, granular rockwool, and perlite, which showed good results in the early growth as well as the marketable yield of tomato in the bag culture. Tomato plants grown in the media mixed with peatmoss, vermiculite and granular rockwool at the ratio of 3 : 1 : 1(by volume) showed the highest marketable yield, and the next at the ratio of 2 : 1 : 1. The perlite-granular rockwool mixtures at the ratio of 2 : 3 and 1 : 4, and the peatmoss vermiculite mixtures at the ratio of 2 : 3 and 3 : 2, seemed to be promising media for bag culture.

  • PDF

Techno-economic Evaluation of an Ethanol Production Process for Biomass Waste (바이오매스 폐기물의 에탄올 생산 공정의 기술경제성 평가)

  • Gwak, In-seop;Hwang, Jong-Ha;Lee, See Hoon
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.171-178
    • /
    • 2016
  • Extensive efforts from all over the world have been made to solve energy problems, such as high oil prices, global warning due to the depletion of oil. Among them, biofuel has been drawing attention as a clean energy, which can replace fossil fuels. However, conventional biofuels were often converted from eatable biomass such as sugar cane, corn and soy which should be replaced with uneatable biomass. In this study, a techno-economical evaluation of the gasification of biomass waste with mixed alcohol synthesis process was performed. Considering available domestic biomass wastes, a 2000 ton/day conversion plant were assumed to produce 533000 L/day ethanol. Also, financial data from previous studies were evaluated and used and economical sensitivities with various operation conditions were established. Economic analysis were conducted by the payback period and internal rate of return (IRR) and net present value (NPV). Sensitivity analyses of raw material costs, initial investment, the major process cost, ethanol price changes and operating costs were all performed.

A Study on the Life Management and Improvement of Vulnerable Parts of Aircraft Structures (항공기 구조 수명관리 및 취약부위 개선에 관한 연구)

  • Choi, Hyoung Jun;Park, Sung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.638-644
    • /
    • 2020
  • This study examines cracks that occur under the load of an aircraft. The life of aircraft vulnerability structures was analyzed and structural fitting improvements were made. Structural integrity and safety have been achieved through preemptive life expectancy and life management of aircraft structures. The crack size inspection capability of the aircraft under analysis is 0.03inch, compared with 0.032inch, which is the lowest of the three vulnerable parts. In addition, the fatigue life analysis results in approximately 1450 operating hours, the lowest of the three vulnerable parts relative to the aircraft's required life of more than 15000 operating hours, which increased the repeat count of the aircraft's initial and re-inspection times, and hence raised the resulting costs and manpower consumption. Finally, the features were improved through structural fitting of the identified three weak parts. The lowest critical crack size was secured at 0.13 through increased structural resistance to generated cracks and increased aircraft safety. The lowest structural fatigue life for cracks occurring during aircraft operation is 25000 operating hours, which are analyzed above the required structural life, resulting in more optimized improvements than the repair costs and excessive fitting range caused by cracks and fractures.