• Title/Summary/Keyword: 운모-유리 세라믹스

Search Result 2, Processing Time 0.016 seconds

Contact fatigue and strength degradation in dental ceramics (치아용 세라믹스에서의 접촉피로 및 강도저하)

  • 정연길;이수영;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.527-533
    • /
    • 1999
  • Hertzian indentation tests with spherical indenters in water were conducted to examine the contact fatigue in three dental ceramics, such as feldspathic porcelain, micaceous glass-ceramic (MGC) and glass-infiltrated alumina, which was used as dental restorations, and evaluated the effect of contact damage on strength. Initial damage was dependent of microstructure, showing cone cracks of brittle behavior in the feldspathic porcelain and deformation of quasi-plastic behavior in the MGC, with an intermediate case in the glass-infiltrated alumina. However, as increasing the number of cyclic loading (n=1~n =$10^6$)all materials showed an abrupt strength degradation, at which fracture was originated from damage in the contact fatigue. There were two strength degradation with increasing the number of cyclic loading in specific loads (200N, 500N, 1000N):first was from the cone cracks, and second was from the radial cracks created by cyclic loading. The radial cracks, once formed, led to rapid degradation in strength properties, Finally the material was failed at the high number of cyclic loading. Strength degradation with indentation load at fixed number of cyclic loading indicated that the feldspathic porcelain should be highly damage tolerant to the contact fatigue.

  • PDF

Ultra-Precise Polishing of Mica Glass Ceramics Using MR Fluids and Nano Abrasives (MR fluid를 이용한 Mica Glass Ceramics의 초정밀 연마)

  • Beak, Si-Young;Song, Ki-Hyeok;Kim, Ki-Beom;Kim, Byung-Chan;Kang, Dong-Sung;Hong, Kwang-Pyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.85-90
    • /
    • 2017
  • Mica-glass ceramics has features such as micro-sized crystals, high strength, chemical resistance, semitransparent optical properties, etc. Due to its superior material properties, mica glass ceramics have increasing applications in dental and medical components, insulation boards, chemical devices, etc. In many applications, especially for dental and medical components, ultra-precise polishing is required. However, it is known to be a very difficult-to-grind material because of its high hardness and brittle properties. Thus, in this study, a newly developed ultra-precise polishing method is applied to obtain nano-level surface roughness of the mica glass ceramics using magnetorheological (MR) fluids and nano abrasives. Nano-sized ceria particles were used for the polishing of the mica glass ceramics. A series of experiments were performed under various polishing conditions, and the results were analyzed. A very fine surface roughness of Ra=6.127 nm could be obtained.