• Title/Summary/Keyword: 운동중첩

Search Result 121, Processing Time 0.031 seconds

Geological structures in the Bonghwajae area Jecheon-si, Chungcheongbuk-do, Korea (충청북도 제천시 봉화재 일대의 지질구조)

  • Jung, Jin-Woo;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.105-117
    • /
    • 2014
  • The Ogcheon and Joseon Supergroups are distributed in the Bonghwajae area, Jecheon-si, Chungcheongbuk-do, Korea which is located in the northeastern fore-end of the Ogcheon Metamorphic Zone. This paper researched the geological structures based on the geometric and kinematic characteristics and the forming sequence of the major multi-deformed rock and microstructures. Most of regional foliations are not the S0 bedding but the S0-1 composite foliations defined by the preferred orientation of stretching minerals, some are recognized as the S0-1-2 composite foliations by the preferred orientation of insoluble opaque minerals and cleavage lamella. The geological structures were formed at least by three phases of deformations i.e. NNE-SSW trending D1, E-W trending D2, N-S trending D3 compressions. The S0-1 composite foliation, which shows a similar zone-distribution trend of the constitution strata of the Ogcheon and Joseon Supergroups, trended WNW before D2 deformation, but it was reoriented into N-S which was parallel to the trend of S2 foliation by D2 deformation, and it was rearranged into NW, NE, N-S trends as it is now by D3 deformation. The structural characteristics of each deformation phase and the deformation history are very similar to those in the eastern domain of Busan area into which the Ogcheon and Joseon Supergroups in this area are extended as NNW trend. It is expected to be very valuable data in interpreting the tectonic evolution of the northeastern fore-end of the Ogcheon Metamorphic Zone.

Effects of Stiffness Characteristics of Super-Structure on Soil-Structure Interaction (지반(地盤)에 대한 구조물(構造物)의 상대강도(相對剛度)가 지반(地盤)-구조물(構造物) 상호작용(相互作用)에 미치는 영향(影響))

  • Park, Hyung Ghee;Joe, Yang Hee;Lee, Yong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.123-132
    • /
    • 1985
  • The flexibility of base material gives considerable influences on seismic responses of a structure. The effects of relative stiffness between super-structure and base material on dynamic soil-structure interaction are evaluated by parametric studies. Two 5-story buildings are used for the study; one is shearwall structure with relatively higher fundamental frequency and the other is frame structure with relatively lower fundamental frequency. The structures are modeled as beam-sticks coupled with springs and dashpots representing the base material. Dynamic equilibrium equations of the soil-structure interaction system are sloved by mode superposition method using Rosset modal damping values. Soil-structure interaction effect is found to be major concern in seismic analysis of shearwall structure in most cases while it seldom becomes engineering problem in frame-type structure. It is also found that seismic responses at lower elevation of the super-structure are amplified though they decrease at higher elevation as soil-structure interaction effects of the system increase.

  • PDF

A Study on Dynamic Behaviour of Cable-Stayed Bridge by Vehicle Load (차량하중에 의한 사장교의 동적거동에 관한 연구)

  • Park, Cheun Hyek;Han, Jai Ik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1299-1308
    • /
    • 1994
  • This paper is considered on the dynamic behavior and the dynamic impact coefficient on the cable-stayed bridge under the vehicle load. The method of static analysis, that is, the transfer matrix method is used to get influence values about displacements, section forces of girder and cable forces. Gotten influence values were used as basic data to analyse dynamic behavior. This paper used the transfer matrix method because it is relatively simpler than the finite element method, and calculating speed of computer is very fast and the precision of computation is high. In the process of dynamic analysis, the uncoupled equation of motion is derived from simultaneous equation of the motion of cable-stayed bridge and vehicle travelling by using mode shape, which was borne from system of undamped free vibration. The solution of the uncoupled equation of motion, that is, time history of response of deflections, velocity and acceleration on reference coordinate system, is found by Newmark-${\beta}$ method, a kind of direct integral method. After the time history of dynamic response was gotten, and it was transfered to the time history of dynamic response of cable-stayed bridge by linear transformation of coordinates. As a result of this numerical analysis, effect of dynamic behavior for cable-stayed bridge under the vehicle load has varied depending on parameter of design, that is, the ratio of span, the ratio of main span length, tower height, the flexural rigidity of longitudinal girder, the flexural rigidity of tower, and the cable stiffness, investigated. Very good agreements with the existing solution in the literature are shown for the uncracked plate as well as the cracked plate.

  • PDF

Geological Structure of the Jirisan Metamorphic Complex of the Yeongnam Massif in the Hwagae Area, Korea (화개지역에서 영남육괴 지리산 변성암복합체의 지질구조)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.251-261
    • /
    • 2013
  • Hwagae area, which is situated in the southeastern part of the Jirisan province, Yeongnam massif, Korea, is mainly composed of Precambrian Jirisan metamorphic rock complex (JMRC). Lithofacies distribution of the Precambrian constituent rocks mainly shows NS-trending tight fold and EW-trending open fold. This paper researched deformational phased structural characteristics of JMRC based on the geometric and kinematic features and the forming sequence of multi-deformed rock structures, and suggests that the geological structure of this area was formed through at least three phases of ductile deformation. (1) Most of structural elements related to the $D_1$ deformation were recognized as $S_{0-1-2}$ composite foliation which was transposed by the $D_2$ deformation. (2) The $D_2$ deformation occurred under the EW-directed tectonic compression, and formed the NS-trending $F_2$ fold and $D_2$ ductile shear zone which is (sub)parallel to the axial plane of $F_2$ fold. (3) The $D_3$ deformation occurred under the NS-directed tectonic compression, and partially reoriented the pre-$D_3$ structural elements into ENE or WNW direction. It indicates that the distribution of Precambrian lithofacies showing NS and EW-trending folds in the Hwagae area is closely associated with the $D_2$ and $D_3$ deformations, respectively.

Suture Anchor Capsulorraphy in the Traumatic Anterior Shoulder Instability: Open Versus Arthroscopic Technique (봉합나사를 이용한 Bankart 봉합술의 관절경적 및 개방적 수술의 비교)

  • Kim Seung-Ho;Ha Kwon-Ick;Kim Sang-Hyun
    • Clinics in Shoulder and Elbow
    • /
    • v.2 no.2
    • /
    • pp.157-169
    • /
    • 1999
  • Eighty-nine shoulders in eighty-eight patients with traumatic unilateral anterior shoulder instability were evaluated for Rowe and UCLA scores, recurrence, return to activity, and range of motion by an independent examiner at an average of 39 months after either arthroscopic or open Bankart repair using suture anchors. The arthroscopic technique included a minimum of 3 anchors, and a routine incorporation of capsular plication and proximal shift. Twenty­six shoulders(86.6%) out of thirty in the open Bankart repair group had excellent or good results while fifty­four(91.5%) of the fifty-nine shoulders with arthroscopic Bankart repair had excellent or good results. The arthroscopic group revealed significantly better results in the Rowe(p=.041) and UCLA scores(p=.026). Two shoulders in each group developed redislocation. There were no significant differences in the loss of external rotation and return to prior activity between the two groups(p>.05). The residual instability occurred more frequently in the group of patients with lesser anchors. Arthroscopic suture anchor capsulorraphy has results equal to or better than the open Bankart procedure.

  • PDF

The Results of Ender Nailing for the Proximal Humerus Fractures - Radiological Evaluation - (상완골 근위부 골절의 Erlder 정을 이용한 치료 결과-방사선학적 분석 -)

  • Park Jin Soo;Chung Moon Sang;Yoon Kang Sub;Baek Goo Hyun;Lee Ji Ho;Kang Seung Baek;Kim Dong Wook
    • Clinics in Shoulder and Elbow
    • /
    • v.2 no.2
    • /
    • pp.187-198
    • /
    • 1999
  • Purpose: The authors compared the results of Ender nailing for the proximal humerus fractures with those of the conservative methods radiographically. Materials and Method: Nine patients(mean age: 69 years.) received Ender nailing, and the other nine patients, conservative treatments(mean age: 73 years). All fractures were 2 part fractures. The Ender nails were inserted either through posterior elbow approach or transepicondylar approach. A simple Velpeau bandage was applied to the conservative treatment group. The average follow-up was 15 months. Results: The initial status of the anatomical reduction, i.e., the values of the medial shift, overlapping and the varus agulation, were little changed at follow-up radiographs in both the Ender nailing group and the conservative treatment group. There was no significant difference for the status of anatomical reduction between the Ender nailing group and the conservative treatment group. The stability of fixation by Ender nails, i.e., the degree of fanning out of the nails was poor in most cases. Not a few problems/complications happened in cases of Ender nailing group; back­ing out of the nail in three cases, penetration of the nails into the humeral heads in 3, fractures or cracking of the humerus around the nail insertion area in 4 and reduction loss in one. Conclusion: We could not get better results with the use of Ender nail. We use no longer Ender nails for the proximal humerus fractures. Further studies are needed for the better option for the proximal humerus fractures.

  • PDF

The temperature condition for the mylonitization of the Cheongsan granite, Korea (변형된 청산 화강암의 압쇄암화작용시의 변형온도 - 변형된 청산 화강암의 구조 해석 -)

Distribution and Origin of Quaternary Mass Transport Deposit in the Ulleung Basin, East Sea (동해 울릉분지 제 4기 질량류 퇴적체 분포 및 기원)

  • Yi, Young-Mi;Yoo, Dong-Geun;Kang, Nyeon-Keon;Yi, Bo-Yeon
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.2
    • /
    • pp.74-87
    • /
    • 2014
  • Analysis of multi-channel seismic reflection profiles collected from the Ulleung Basin reveals that the Quaternary sequence consists of four stratigraphic units separated by erosional unconformities. Individual stratigraphic unit includes eighteen mass transport deposits which are variable in geometric characteristics and spatial distribution. Each mass transport deposit on the seismic profile is acoustically characterized by chaotic or transparent seismic facies, and shows wedge or lens-shaped external geometry. The mass transport deposits, which comprise a succession of stacked wedges, mainly occur on the southern slope, and their thickness gradually decreases toward the basin plain. The time structure map of erosional unconformities shows that a tectonic-induced structural high and troughs toward the northwest and northeast are developed at the central part of the basin. Based on the isochron map, the mass transport deposits, originated from southern part of the study area, transported to the basin plain and can be divided into two groups by the structural high. Consequently, the mass transport deposits within the Quaternary sequence in the Ulleung Basin are largely controlled by the large amounts of sediment supply, dissociation of gas hydrate during the lowstands, and central structural high.

Fracture and Hygrothermal Effects in Composite Materials (복합재의 파괴와 hygrothermal 효과에 관한 연구)

  • Kook-Chan Ahn;Nam-Kyung Kim
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 1996
  • This is an explicit-Implicit, finite element analysis for linear as well as nonlinear hygrothermal stress problems. Additional features, such as moisture diffusion equation, crack element and virtual crack extension(VCE ) method for evaluating J-integral are implemented in this program. The Linear Elastic Fracture Mechanics(LEFM) Theory is employed to estimate the crack driving force under the transient condition for and existing crack. Pores in materials are assumed to be saturated with moisture in the liquid form at the room temperature, which may vaporize as the temperature increases. The vaporization effects on the crack driving force are also studied. The Ideal gas equation is employed to estimate the thermodynamic pressure due to vaporization at each time step after solving basic nodal values. A set of field equations governing the time dependent response of porous media are derived from balance laws based on the mixture theory Darcy's law Is assumed for the fluid flow through the porous media. Perzyna's viscoplastic model incorporating the Von-Mises yield criterion are implemented. The Green-Naghdi stress rate is used for the invariant of stress tensor under superposed rigid body motion. Isotropic elements are used for the spatial discretization and an iterative scheme based on the full newton-Raphson method is used for solving the nonlinear governing equations.

  • PDF

Structural Geometry of the Seongjuri Syncline, Chungnam Basin (충남분지 성주리향사의 구조기하학적 해석)

  • Noh, Jungrae;Park, Seung-Ik;Kwon, Sanghoon
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.579-587
    • /
    • 2018
  • Chungnam Basin has been known as one of the largest Mesozoic basins in Korea, filled mainly with so-called Daedong Supergroup. The basin has evolved as the Early to Middle Jurassic intra-arc volcano-sedimentary basin developed on top of the Late Triassic to Early Jurassic post-collisional basin in this area, recording evolutionary history of the Mesozoic tectonics in the southwestern Korean Peninsula. This study carries out the geometric interpretations of the Seongjuri syncline and its surroundings in the central part of the Chungnam Basin, based on detailed structural field survey. Based on its doubly-plunging fold geometry, the Seongjuri syncline could be subdivided into the southwestern and northeastern domains. On the down-plunge profiles of the southwestern domain of the Seongjuri syncline as well as the underlying Okma fold, the Okma fault shows typical geometry of a basement-involved reverse fault that propagated up to the sedimentary cover. The profiles illustrate that the Seongjuri syncline occurs in front of the tip of the Okma fault, likely implying its origin as a part of the fault-related fold system. The result of this study will provide better insight into the structural interpretation of the Chungnam Basin, and will further provide useful information for the Mesozoic orgenic events of the southwestern Korean Peninsula.