• Title/Summary/Keyword: 우주 비행체

Search Result 553, Processing Time 0.022 seconds

An Experimental Study on Internal Drag Correction of High Speed Vehicle Using Three Probes (세 가지 프로브를 이용한 초고속 비행체 내부 항력 보정 기법의 실험적 연구)

  • Jin, Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.529-537
    • /
    • 2021
  • Wind tunnel tests were carried out with a scramjet high speed vehicle. Since the scramjet engine does not have a compressor, it has a simple structure, but it is important to design the intake for the supersonic combustion in the combustion chamber. In this study, internal flow characteristics and the starting condition were analyzed by measuring the pressure at the isolator exit just before the combustion chamber, and the intake performance parameters were calculated and compared the result on every Mach number. The aerodynamic characteristics of the flow-through high speed vehicle were analyzed and internal drag correction is required to precisely analyze the aerodynamic characteristics. In this paper, an experimental technique using three probes for internal drag correction was proposed. By applying internal drag correction, it was able to figure out the effect of the internal flow on the aerodynamic force of the vehicle.

A Study on the Influence of Helicopter Main Rotor Inflow Model upon Launched Rocket Trajectory and Safe Launch Envelope (헬리콥터 유입류 모델에 따른 발사된 로켓의 비행궤적 영향성 및 안전발사 기동영역 해석 연구)

  • Yang, Chang Deok;Jung, Dong Woo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.70-77
    • /
    • 2019
  • This study presents the numerical investigation of the trajectory of rocket launched from a helicopter. The nonlinear mathematical model of armed configuration of UH-60 helicopter was developed while Hydra 70 unguided rocket was modeled to simulate the rocket behavior. The effects of various inflow models on the launched rocket trajectory are obtained. Similarly, rocket launch simulation was performed to determine the unsafe flight maneuver condition where the rocket trajectory is critically close to the helicopter main rotor tip path plane.

Preliminary Design of LEO Satellite Propulsion System (저궤도위성 추진시스템 예비 설계)

  • Yu, Myeong-Jong;Lee, Gyun-Ho;Kim, Su-Gyeom;Choe, Jun-Min
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.85-89
    • /
    • 2006
  • Propulsion System provides the required velocity change impulse for orbit transfer from parking orbit to mission orbit and three-axis vehicle attitude control impulse. New LEO Satellite propulsion system (PS) will be an all-welded, monopropellant hydrazine system. The PS consists of the subassemblies and components such as Thrusters, Propellant Tank, Pressure Transducer, Propellant Filter, Latching Isolation Valves, Fill/Drain Valves, interconnecting propellant line assembly, and thermal hardwares for operation-environment control of the PS. In this study, preliminary design process of LEO Satellite propulsion system will be summarized.

  • PDF

The Study Trend and Problems of Propulsion System in a Zero-gravity Environment (무중력 환경에서 추진기관의 문제점 및 연구 동향)

  • Kil, Gyoung-Sub;Lim, Ha-Young;Lee, Kyung-Won;Cho, In-Hyun
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.96-103
    • /
    • 2010
  • The propulsion systems such as upper stages of launch vehicles, orbiters, spacecrafts have to operate in the zero gravity environment. Because the flight condition where the vehicle undergoes is different from the normal gravity state, many studies have been being in progress. Fluid behavior in the zero gravity condition is differently shown in the normal gravity state because the importance of the intermolecular force, such as adhesion, cohesion, and surface tension is enlarged. In this paper, we investigate the characteristic of fluid behavior and describe effects and problems on the liquid propulsion system due to these fluid behavior. We also check which studies are in progress in order to solve these problems.

  • PDF

Development of Real-Time Vision Aided Navigation Using EO/IR Image Information of Tactical Unmanned Aerial System in GPS Denied Environment (GPS 취약 환경에서 전술급 무인항공기의 주/야간 영상정보를 기반으로 한 실시간 비행체 위치 보정 시스템 개발)

  • Choi, SeungKie;Cho, ShinJe;Kang, SeungMo;Lee, KilTae;Lee, WonKeun;Jeong, GilSun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.401-410
    • /
    • 2020
  • In this study, a real-time Tactical UAS position compensation system based on image information developed to compensate for the weakness of location navigation information during GPS signal interference and jamming / spoofing attack is described. The Tactical UAS (KUS-FT) is capable of automatic flight by switching the mode from GPS/INS integrated navigation to DR/AHRS when GPS signal is lost. However, in the case of location navigation, errors accumulate over time due to dead reckoning (DR) using airspeed and azimuth which causes problems such as UAS positioning and data link antenna tracking. To minimize the accumulation of position error, based on the target data of specific region through image sensor, we developed a system that calculates the position using the UAS attitude, EO/IR (Electric Optic/Infra-Red) azimuth and elevation and numerical map data and corrects the calculated position in real-time. In addition, function and performance of the image information based real-time UAS position compensation system has been verified by ground test using GPS simulator and flight test in DR mode.

전기체 정적시험 치구설계 기술보고서

  • Kim, Sung-Chan;Shin, Jeong-Woo;Shim, Jae-Yeul;Hwang, In-Hee
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.32-44
    • /
    • 2002
  • This paper contains the information that describes the test fixture design and technology for full-scale airframe static test. Obtained technologies consist of determination of design load for test fixture, design technique for loading system, counterbalance system, positioning system of test article, test equipment and overload protection method. Full-scale airframe static test of advanced jet trainer was implemented using test fixture which are applied these technique.

  • PDF

Dynamic Soaring Optimal Path Following with Time-variant Horizontal Wind Model (시변 수평풍 모델을 적용한 동적 활공 최적 궤적 추종)

  • Park, SeungWoo;Han, SeungWoo;Kim, Linkeun;Ko, Sangho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.72-80
    • /
    • 2021
  • Albatross uses dynamic soaring technique to obtain energy from horizontal winds and fly long distances without flapping. These dynamic soaring technique can be applied to manned/unmanned aircraft to reduce the components required for the aircraft and achieve light weight and small volume to effectively perform a given task. In this paper, to simulate the dynamic soaring technique of Albatross, we defined the optimization problem and set each boundary condition to derive the optimal flight trajectory and carry out simulations to follow it. In particular, to model dynamic soaring simulations more closely with reality, we proposed a horizontal wind model that changes every moment. This identifies and analyzes the effect of the time-variable horizontal wind model on the dynamic soaring mission of unmanned aircraft.

Design and Analysis for the Propeller of MAVs in Low Reynolds Number Flows (저레이놀즈수 영역의 초소형비행체 프로펠러 설계 및 해석)

  • Lee, Ki-Hak;Kim, Kyu-Hong;Lee, Kyung-Tae;Ahn, Jon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.1-8
    • /
    • 2002
  • The performance of MAV(Micro Air Vehicles) propellers is highly affected by the aerodynamic characteristics of a 2-D blade airfoil shapes. XFOIL is used to predict the lift and drag coefficients in low Reynolds Number flows. ARA-D 6%, which shows a good performance in low Reynolds Number regions, is selected as a blade airfoil. The 3-D propeller blade shape is optimized with the minimum energy loss condition, and the distribution of aerodynamic coefficients of ARA-D 6% is calculated. The designed optimal blade is compared with the Black Widow's propeller blade shape in the same conditions. The results indicate that the designed propeller installed in MAV can provide a good performance.

Link Margin Analysis on Telemetry for KSLV-I Launch (KSLV-1 발사를 위한 원격측정신호 Link Margin 분석)

  • Oh, Chang-Yul;Lee, Sung-Hee;Kim, Dong-Hyun;Kwon, Sun-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.105-112
    • /
    • 2009
  • Telemetry data is very important for the Launch Mission and Flight Safety Control during the Space Launch. In Naro Space Center, several telemetry stations such as a small station in the NARO space center, two stations in Jeju and a downrange station on a ship are deployed for the stable acquisition/receiving of the telemetry signals. In this paper, the Link Margin and Reliability for the telemetry are analyzed to evaluate the probability of the signal receiving of each station. Even though the proper analysis is to using the on-board EIRP(Effective Isotropic Radiation Power) values in the direction of the ground station considering the predicted flight trajectory and the locations of the stations, the global EIRP of 95% spatial coverage has been used for the analysis, due to the limitation of the available data.

  • PDF

스마트 무인기 흡기구 설계 및 성능해석

  • Jung, Yong-Wun;Jun, Yong-Min;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.197-207
    • /
    • 2004
  • The developing Smart UAV in KARI supposes high speed flight as like a conventional plane, as well as vertical takeoff and landing as like a helicopter. Therefore, the air intake system should be designed to provide the sufficient air flow to the engine and the maximum possible total pressure recovery at the engine intake screen over a wide range of flight conditions. For this purpose, we designed the intake system using a pitor type intake model and plenum chamber. In this paper, we designed the intake model and analyzed the performance of designed intake system using the general-purpose commercial CFD code, CFD-ACE+. The analysis results of the total pressure variation and the velocity distribution were illustrated in this paper. The pressure recovery and distortion coefficient at a plane coincident with the compressor inlet were calculated and streamline variation through the intake system was investigated at the worst flight condition as well as the standard flight condition.

  • PDF