• Title/Summary/Keyword: 우수 유출량

Search Result 341, Processing Time 0.03 seconds

Oxidative Stress and Antioxidant Responses in Poplar Clones Irrigated with Livestock Waste Leachate (양돈폐수 처리에 의한 포플러클론의 산화스트레스와 항산화반응)

  • Je, Sun-Mi;Yeo, Jin-Gi;Woo, Su-Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.3
    • /
    • pp.140-147
    • /
    • 2011
  • We studied the influence of livestock waste leachate on oxidative damage and antioxidative responses in poplar clones in August which increase the demand of antioxidants because of high temperature and high light during this period. We measured ion leakage, antioxidant enzyme activities (APX, GR), and carotenoid contents. Oxidative damage and antioxidative responses by treated livestock waste leachate in poplar clones showed various results. We divided poplar clones into three groups using the criteria based on ion leakage which represent cell damage induced oxidative stress. Eco 28, 62-10, Bonghwa1 and Dorskamp belonged to the first group in which the cell damaged level was lower than that of the control. The results suggest that this group augmented for demand of antioxidative in summer because high concentration of nitrogen induced by treatment of live stock wastes acted as environmental stress. Consequently, they failed to keep up the homeostasis of reactive oxygen species. The second group in which the cell damaged level was similar to that of the control was Suwon, 72-30 and 72-31 clones. Finally, 97-18 clone belonged to the third group in which the cell damaged level was lower than that of the control group. In this case, nitrogen treated by livestock waste leakage decreased oxidative stress. 97-18 clone was the clones with the least damage in summer oxidative stresses treated by livestock waste leakage. These results suggest that the high concentration nitrogen due to the livestock waste leakage can act differently upon the clones. We speculate that the added oxidation damage in the summer (growing season) may have an effect on the total fresh weight and also influence the purification ability for livestock waste leakage. However, further studies are needed for the confirmation.

Finite Element Analysis on the Deformation Behavior Safety of a Gas Valve (가스밸브의 변형거동 안전성에 관한 유한요소해석)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.70-75
    • /
    • 2017
  • This paper presents the FEM analysis results on the deformation behavior safety of automatic cut-off horizontal and conventional vertical gas valves. Based on the FEM analysis, the primary maximum deformation of $4.4{\mu}m$ was formed on the right end side of a valve body when the internal gas pressure was supplied on the screw port and gas discharge port of an automatic cut-off horizontal gas valve. And the secondary maximum deformation of $2.9{\mu}m$ was formed on the end side of safety valve port. This small deformation of an automatic cut-off horizontal gas valve is strongly related to the balanced design of a horizontal gas valve main body, which is composed of a screw part, gas outlet port, port for a stem and spindle shaft assembly, and safety valve port. But, the primary maximum deformation of 0.076mm was formed on the upper part of a conventional automatic cut-off vertical gas valve when the internal gas pressure was supplied on the screw port and gas discharge port. And the secondary maximum deformation of 0.055mm was formed on the left end side of a gas outlet port. This may effect on the sealing clearance of o-ring that is inserted on the groove of an automatic cut-off unit. Thus, this paper recommends an automatic cut-off horizontal gas valve compared with that of a conventional gas valve for a gas leakage free mechanism of a LPG cylinder valve.

A study on the derivation and evaluation of flow duration curve (FDC) using deep learning with a long short-term memory (LSTM) networks and soil water assessment tool (SWAT) (LSTM Networks 딥러닝 기법과 SWAT을 이용한 유량지속곡선 도출 및 평가)

  • Choi, Jung-Ryel;An, Sung-Wook;Choi, Jin-Young;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1107-1118
    • /
    • 2021
  • Climate change brought on by global warming increased the frequency of flood and drought on the Korean Peninsula, along with the casualties and physical damage resulting therefrom. Preparation and response to these water disasters requires national-level planning for water resource management. In addition, watershed-level management of water resources requires flow duration curves (FDC) derived from continuous data based on long-term observations. Traditionally, in water resource studies, physical rainfall-runoff models are widely used to generate duration curves. However, a number of recent studies explored the use of data-based deep learning techniques for runoff prediction. Physical models produce hydraulically and hydrologically reliable results. However, these models require a high level of understanding and may also take longer to operate. On the other hand, data-based deep-learning techniques offer the benefit if less input data requirement and shorter operation time. However, the relationship between input and output data is processed in a black box, making it impossible to consider hydraulic and hydrological characteristics. This study chose one from each category. For the physical model, this study calculated long-term data without missing data using parameter calibration of the Soil Water Assessment Tool (SWAT), a physical model tested for its applicability in Korea and other countries. The data was used as training data for the Long Short-Term Memory (LSTM) data-based deep learning technique. An anlysis of the time-series data fond that, during the calibration period (2017-18), the Nash-Sutcliffe Efficiency (NSE) and the determinanation coefficient for fit comparison were high at 0.04 and 0.03, respectively, indicating that the SWAT results are superior to the LSTM results. In addition, the annual time-series data from the models were sorted in the descending order, and the resulting flow duration curves were compared with the duration curves based on the observed flow, and the NSE for the SWAT and the LSTM models were 0.95 and 0.91, respectively, and the determination coefficients were 0.96 and 0.92, respectively. The findings indicate that both models yield good performance. Even though the LSTM requires improved simulation accuracy in the low flow sections, the LSTM appears to be widely applicable to calculating flow duration curves for large basins that require longer time for model development and operation due to vast data input, and non-measured basins with insufficient input data.

Field Application and Maintenance of sidewalk concrete block for PV Power Generation (태양광 발전을 위한 보도형 콘크리트 블록의 현장 적용과 유지관리)

  • Kim, Bong-Kyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.75-83
    • /
    • 2019
  • In order to fulfill the obligation to voluntarily reduce greenhouse gas emissions under the Paris Climate Agreement, the proportion of coal and nuclear power generation is reduced worldwide and national efforts are being made to spread renewable energy including solar power generation. Korea also intends to increase the proportion of renewable energy generation to 30~35% by 2040 by introducing laws and regulations. In addition, while the country is trying to apply solar power generation to sidewalks and roads, there is no research related to it in Korea. Therefore, as a precedent study to develop solar power generation roads, solar power generation concrete blocks applicable to sidewalks and plazas were developed and the applicability was evaluated by constructing them on the site. As a result of indoor experiment, compressive strength was measured by 25.5~35.7MPa and flexural strength was measured by 5.1~10.5MPa, which showed that all domestic standards were satisfied. However, the higher the unit cement amount, the lower the strength was measured according to the mixing of the broken fine aggregate. The absorption rate was 5.7%, which satisfied the domestic standard of 7% or less. As a result of the freeze-thawing test, the reduction rate of the compressive strength after 100 cycles was up to 6.3%. As a result of measuring the settlement amount after construction, the maximum of 2.498mm was measured and irregular settlement occurred in the overall area, which is because the resolution of the sand layer was poor during construction. Maintenance techniques of sidewalk concrete block and solar panel need to be established more efficiently through long-term operation in the further.

Comparing Prediction Uncertainty Analysis Techniques of SWAT Simulated Streamflow Applied to Chungju Dam Watershed (충주댐 유역의 유출량에 대한 SWAT 모형의 예측 불확실성 분석 기법 비교)

  • Joh, Hyung-Kyung;Park, Jong-Yoon;Jang, Cheol-Hee;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.861-874
    • /
    • 2012
  • To fulfill applicability of Soil and Water Assessment Tool (SWAT) model, it is important that this model passes through a careful calibration and uncertainty analysis. In recent years, many researchers have come up with various uncertainty analysis techniques for SWAT model. To determine the differences and similarities of typical techniques, we applied three uncertainty analysis procedures to Chungju Dam watershed (6,581.1 $km^2$) of South Korea included in SWAT-Calibration Uncertainty Program (SWAT-CUP): Sequential Uncertainty FItting algorithm ver.2 (SUFI2), Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol). As a result, there was no significant difference in the objective function values between SUFI2 and GLUE algorithms. However, ParaSol algorithm shows the worst objective functions, and considerable divergence was also showed in 95PPU bands with each other. The p-factor and r-factor appeared from 0.02 to 0.79 and 0.03 to 0.52 differences in streamflow respectively. In general, the ParaSol algorithm showed the lowest p-factor and r-factor, SUFI2 algorithm was the highest in the p-factor and r-factor. Therefore, in the SWAT model calibration and uncertainty analysis of the automatic methods, we suggest the calibration methods considering p-factor and r-factor. The p-factor means the percentage of observations covered by 95PPU (95 Percent Prediction Uncertainty) band, and r-factor is the average thickness of the 95PPU band.

Development of Trip Generation Type Models toward Traffic Zone Characteristics (Zone특성 분할을 통한 유형별 통행발생 모형개발)

  • Kim, Tae-Ho;Rho, Jeong-Hyun;Kim, Young-Il;Oh, Young-Taek
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.93-100
    • /
    • 2010
  • Trip generation is the first step in the conventional four-step model and has great effects on overall demand forecasting, so accuracy really matters at this stage. A linear regression model is widely used as a current trip generation model for such plans as urban transportation and SOC facilities, assuming that the relationship between each socio-economic index and trip generation stays linear. But when rapid urban development or an urban planning structure has changed, socio-economic index data for trip estimation may be lacking to bring many errors in estimated trip. Hence, instead of assuming that a socio-economic index widely used for a general purpose, this study aims to develop a new trip generation model by type based on the market separation for the variables to reflect the characteristics of various zones. The study considered the various characteristics (land use, socio-economic) of zones to enhance the forecasting accuracy of a trip generation model, the first-step in forecasting transportation demands. For a market separation methodology to improve forecasting accuracy, data mining (CART) on the basis of trip generation was used along with a regression analysis. Findings of the study indicated as follows : First, the analysis of zone characteristics using the CART analysis showed that trip production was under the influence of socio-economic factors (men-women relative proportion, age group (22 to 29)), while trip attraction was affected by land use factors (the relative proportion of business facilities) and the socio-economic factor (the relative proportion of third industry workers). Second, model development by type showed as a result that trip generation coefficients revealed 0.977 to 0.987 (trip/person) for "production" 0.692 to 3.256 (trip/person) for "attraction", which brought the necessity for type classifications. Third, a measured verification was conducted, where "production" and "attraction" showed a higher suitability than the existing model. The trip generation model by type developed in this study, therefore, turned out to be superior to the existing one.

Development of Various Pilot Scale's Ultrasound Systems and Sonodegradation of Naphthalene in Water (다양한 형태의 Pilot Scale 초음파 시스템 개발 및 나프탈렌 분해효율 검증)

  • Park, Jong-Sung;Lee, Ha-Yun;Han, Jong-Hun;Her, Nam-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.281-288
    • /
    • 2011
  • Recently, researches that a variety of contaminants in water are removed by sonolysis technology with oxidation and pyrolysis process from cavitation were conducted. However, there are few studies for sonochemical treatment by a pilot-scale ultrasound system. This research focused on developing pilot-scale ultrasound systems, which could be an continuously effective treatment for a large volumes of contaminants, and demonstrating the feasibility of utilizing these systems to remove naphthalene from groundwater. V-120 type reactor was found to be 1.4~2.2 times higher effective than the normal type. A total of three different pilot scale's systems consisted of installing effluent and irrigation water in order to be a continuos system, including supplemental additives, and applying a V-120 type reactor and a external cooling cycle system. Naphthalene levels treated by three systems were lower than a recommended guideline of naphthalene for drinking water in EPA. Especially, the naphthalene removal efficiencies of PS1 and PS2 systems were over 97%. The pilot-scale continuous ultrasound clean-up system delivered over 84~95% naphthalene removal efficiency for treatment of 10~20 liter of groundwater. In addition, the ultrasound system could be successfully applied to the conditions of artificial and genuine groundwater contaminated with naphthalene.

A study of Spatial Multi-Criteria Decision Making for optimal flood defense measures considering regional characteristic (지역특성을 고려한 홍수방어대안 제시를 위한 공간 다기준의사결정 기법 적용 방안 연구)

  • Lee, Eunkyung;Ji, Jungwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.4
    • /
    • pp.301-311
    • /
    • 2018
  • Recently, the flood inundation caused by heavy rainfall in urban area is increasing due to global warming. The variability of climate change is described in the IPCC 5th report (2014). The precipitation pattern and hydrological system is varied by climate change. Since the heavy rainfall surpassed the design capacity of the pipeline, it caused great damage in metropolitan cities such as Seoul and Busan. Inundation in urban area is primarily caused by insufficient sewer capacity and surplus overflow of river. Inundation in urban area with concentrated population is more dangerous than rural and mountains areas, because it is accompanied by human casualties as well as socio-economic damage to recover destruction of roads, brides and underground spaces. In addition, various factors such as an increase in impervious area, a short time of concentration to outlet, and a shortage of sewer capacity's lack increase flooding damage. In this study, flood inundation analysis was conducted for vulnerable areas using XP-SWMM. Also, three structural flood prevention measures such as drainage pipeline construction, detention reservoir construction, and flood pumping station construction are applied as flood damage prevention alternatives. The flood data for each alternative were extracted by dividing the basin by grid. The Spatial Compromise Programming are applied using flood assessment criteria, such as maximum inundation depth, inundation time, and construction cost. The purpose of this study is to reflect the preference of alternatives according to geographical condition even in the same watershed and to select flood defense alternative considering regional characteristics.

A Study on the Hydrologic Design of Detention Storage Ponds in Urbanized Area (도시유역에서 지체저류시설의 수문학적 설계에 관한 연구)

  • 이정식;이재준
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.159-173
    • /
    • 1995
  • This study is to develop the suitable hydrologic models for determination of the size and location of detention storage facilities to restrain stormwater runoff in urban areas. Fictitious areas of two levels are considered to seize the hydrologic response characteristics. A one-square-kilometer area is selected for the catchment level, and a 10-square-kilometer area consisting of 10 catchments is adapted at the watershed level as representative of urban drainage area. In this analysis, different rainfall frequencies, land uses, drainage patterns, basin shapes and detention storage policies are considered. Flow reduction effect of detention storage facilities is deduced from storage ratio and detention basin factor. A substantial saving in detention storage volumes is achieved when the detention storage is planned at the watershed level than the catchment level. For the application of real watersheds, two watersheds in Seoul metropolitan area-Jamshil 2, Seongnae 1-are selected on the basis of hydrologic response characteristics. Through the regression analysis between dimensionless detention storage volume, dimensionless upstream area ratio and reduction rate of storage ratio, the regression equations to determine the size and location of detention storage facilities are presented.

  • PDF

Rainfall analysis considering watershed characteristics and temporal-spatial characteristics of heavy rainfall (집중호우의 시·공간적 특성과 유역특성을 고려한 강우분석 연구)

  • Kim, Min-Seok;Choi, Ji-Hyeok;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.739-745
    • /
    • 2018
  • Recently, the incidence of heavy rainfall is increasing. Therefore, a rainfall analysis should be performed considering increasing frequency. The current rainfall analysis for hydrologic design use the hourly rainfall data of ASOS with a density of 36 km on the Korean Peninsula. Therefore, medium and small scale watershed included Thiessen network at the same rainfall point are analyzed with the same design rainfall and time distribution. This causes problem that the watershed characteristics can not be considered. In addition, there is a problem that the temporal-spatial change of the heavy rainfall occurring in the range of 10~20 km can not be considered. In this study, Author estimated design rainfall considering heavy rainfall using minutely rainfall data of AWS, which are relatively dense than ASOS. Also, author analyzed the time distribution and runoff of each case to estimate the huff's method suitable for the watershed. The research result will contribute to the estimation of the design hydrologic data considering the heavy rainfall and watershed characteristics.