• Title/Summary/Keyword: 우선적입계침식

Search Result 2, Processing Time 0.015 seconds

Corrosion Behavior of Dolomite Clinkers by Slag (Slag에 의한 돌로마이트 클링커의 침식거동)

  • 박재원;홍기곤
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.30-35
    • /
    • 1999
  • For dolomite clinkers used as stamp materials, the corrostion behavior of those by slag was inverstigated between 1550$^{\circ}C$ and 1650$^{\circ}C$. Fe2O3 among slag components was selectively penetrated into the grain boundaries of dolomite clinkers. In hot face, the magnesioferrite was preferentially formed by Fe2O3 component contained in dolomite clinker rather than Fe2O3 of slag. The corrosion steps of dolomite clinkers by slag were found as follows ; (1) The dicalciumferrite was formed by the reaction of the calcia within dolomite clinkers with Fe2O3 of slag. (2) The magnesia within dolomite clinkers reacted with the dicalciumferrite to from magnesioferrite and the residual calcia within dolomite clinkers reacted with the dicalciumferrite to form magnesioferrite and the residual calcia was dissolved into slag. (3) The magnesioferrite was corroded by CaO-SiO2 compounds of slag. With the temperature of slag increased, the magnesioferrite layer in hot face was decreased for dolomite clinker without Fe2O3 while the layer thickness and grain sizes of magnesioferrite was increased for dolomite clinker with Fe2O3.

  • PDF

The Effects of Hot Corrosion on the Creep Rupture Properties of Boiler Tube Material (보일러 管材料의 크리프破斷特性에 미치는 고온부식의 影響)

  • 오세욱;박인석;강상훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.236-242
    • /
    • 1989
  • In order to investigate the effects of hot corrosion on the creep rupture properties and creep life of 304 stainless steel being used as tube materials of heavy oil fired boiler, the creep rupture tests were carried out at temperature 630.deg.C, 690.deg.C and 750.deg.C in static air for the specimens with or without coating of double layer corrosives according to the new hot corrosion test method simulating the situation commonly observed on superheater tubes of the actual boiler. The double layer corrosives are 85% V$_{2}$O$_{5}$ + 10% Na$_{2}$So$_{4}$ + 5% Fe$_{2}$O$_{3}$ as the inner layer corrosive being once melted at 900.deg. C and crushed to powder, and 10% V$_{2}$O$_{5}$ + 85% Na$_{2}$SO$_{4}$ +5% Fe$_{2}$O$_{3}$ as the outer layer corrosive. As results, in the specimen coated with the double layer corrosives, the rupture strength was extremely lowered and showed a large difference each other. The rupture ductility also lowered remarkably as a result of the brittle fracture mode due to hot corrosion. These results indicate that hot corrosion could essentially alter the creep fracture mechanism. From the metallographic observation, it was clarified that the rupture life of 304 stainless steel subjected to hot corrosion was chiefly determined by the behavior of the aggressive intergranular penetration of sulfides.des.