• Title/Summary/Keyword: 우반구 우세

Search Result 13, Processing Time 0.017 seconds

A Review of the Cognitive Neuroscience of Creativity (창의성에 대한 인지신경과학 연구 개관)

  • Cho, Soohyun
    • Korean Journal of Cognitive Science
    • /
    • v.26 no.4
    • /
    • pp.393-433
    • /
    • 2015
  • Creativity refers to the ability to generate novel and useful ideas. Understanding the mechanism of creativity and its enhancement is important in order to solve major problems of the modern society and to improve the wellness of mankind. Creativity is a highly heterogeneous and complex ability which should not be conceptualized as a single entity. Thus, the current literature on creativity is based on a component process approach to creativity. The present study introduces cognitive neuroscience research studying the mechanism of divergent thinking, insight, relational thinking and artistic creativity which are the major components of creativity. Based on an expansive review, the early hypothesis of hemispheric asymmetry emphasizing the importance of the right as opposed to the left hemisphere is not supported by scientific evidence. In addition, there is no consensus or consistency on which specific brain region is related to a certain component of creativity. In fact, there is a mixture of studies reporting involvement of various brain regions across all four lobes of the brain. This inconsistency in the literature most likely reflects heterogeneity of the component processes of creativity and sensitivity of the neural response to differences across tasks and cognitive strategy. The present study introduces examples of representative studies reporting seminal findings on the neural basis and the enhancement of creativity based on innovative methodology. In addition, we discuss limitations of the current cognitive neuroscience approach to creativity and present directions for future research.

Changes of the Prefrontal EEG(Electroencephalogram) Activities according to the Repetition of Audio-Visual Learning (시청각 학습의 반복 수행에 따른 전두부의 뇌파 활성도 변화)

  • Kim, Yong-Jin;Chang, Nam-Kee
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.3
    • /
    • pp.516-528
    • /
    • 2001
  • In the educational study, the measure of EEG(brain waves) can be useful method to study the functioning state of brain during learning behaviour. This study investigated the changes of neuronal response according to four times repetition of audio-visual learning. EEG data at the prefrontal$(Fp_{1},Fp_{2})$ were obtained from twenty subjects at the 8th grade, and analysed quantitatively using FFT(fast Fourier transform) program. The results were as follows: 1) In the first audio-visual learning, the activities of $\beta_{2}(20-30Hz)$ and $\beta_{1}(14-19Hz)$ waves increased highly, but the activities of $\theta(4-7Hz)$ and $\alpha$ (8-13Hz) waves decreased compared with the base lines. 2). According to the repetitive audio-visual learning, the activities of $\beta_{2}$ and $\beta_{1}$ waves decreased gradually after the 1st repetitive learning. And, the activity of $\beta_{2}$ wave had the higher change than that of $\beta_{1}$ wave. 3). The activity of $\alpha$ wave decreased smoothly according to the repetitive audio-visual learning, and the activity of $\theta$ wave decreased radically after twice repetitive learning. 4). $\beta$ and $\theta$ waves together showed high activities in the 2nd audio-visual learning(once repetition), and the learning achievement increased highly after the 2nd learning. 5). The right prefrontal$(Fp_{2})$ showed higher activation than the left$(Fp_{1})$ in the first audio-visual learning. However, there were not significant differences between the right and the left prefrontal EEG activities in the repetitive audio-visual learning. Based on these findings, we can conclude that the habituation of neuronal response shows up in the repetitive audio-visual learning and brain hemisphericity can be changed by learning experiences. In addition, it is suggested once repetition of audio-visual learning be effective on the improvement of the learning achievement and on the activation of the brain function.

  • PDF

Disturbed Functional Asymmetry of Sensorimotor Cortex in Schizophrenia: A Study with Functional Magnetic Resonance Imaging (정신분열증에서 감각운동피질의 기능적 비대칭성의 장애: 기능적 자기공명영상을 이용한 연구)

  • Ahn, Kook-Jin;Chae, Jeong-Ho;Kim, Tae;Kim, Euy-Neyng;Lee, Jee-Mun;Choi, Kyu-Ho;Hahn, Seong-Tai
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.52-57
    • /
    • 2000
  • Purpose : The purpose of this study was to investigate the pattern of cerebral response to motor tasks in patients with schizophrenia compared with normal subjects using functional MRI. Materials and methods ; Nine right handed-schizophrenic patients and six right-handed normal subjects were included. We used right hand movement as task. Series of 120 consecutive echo-planar images per section were acquired during three cycles of task and rest activations. Lateralization index of cortical response was measured and compared between patients and normal subjects. Results ; Right hand motor task was associated with greater activation in left sensorimotor cortex than the right in normal subjects. Schizophrenia patients showed relatively decreased activation in left cortex and increased activation in right cortex compared with normal subjects. In one patient, reversed lateralization was noted. Conclusion : Normal hemispheric asymmetry of cortical response to motor task was found in different pattern in schizophrenia. Our result is consistent with functional disturbance of motor circuitry in this disorder. Functional MRI will play an important role in diagnosis and research of this disorder.

  • PDF