• Title/Summary/Keyword: 우레탄 보드

Search Result 4, Processing Time 0.017 seconds

Foundational Experiments about Bending Strength of Floating Floor Method on Roof-top by using a Polyurethane Board (우레탄 보드를 활용한 옥상 뜬바닥 구조공법의 휨강도에 관한 기초적 실험)

  • Park, Gil-Beom;Park, Jun-Mo;Kim, Ok-Kyue;Jeong, Il-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.15-16
    • /
    • 2016
  • The roof-top of deteriorated building is necessary to improve that performance of waterproof and heat insulation is lowered. However, the existing method is difficult to supply due to complicated process and high cost. Therefore, practical condition and demand for occupant considered, it is necessary to develop inexpensive and easy method, such as a floating floor method using thermal insulation. This study is experiments on foundational experiment was conducted on the bending strength. A polyurethane board for experiment forms a square and it has various size that 25cm, 33cm, 50cm, and 100cm. Meanwhile, the uniform load of 200kg/㎡ which general working load is applied to the bending strength.

  • PDF

A Study on the Combustion Characteristics of Synthetic Insulation for Building (건축용 합성 단열재의 연소특성에 관한 연구)

  • Kwon, Hyun-Seok;Lee, Si-Young;Kim, Jong-Buk;Yoon, Myoung-Oh
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.30-37
    • /
    • 2018
  • This study is an analysis of combustion characteristics of synthetic insulation materials such as houses and warehouses. Using combustion cone calorimeter and SEM, the researching has experimented combustion characteristics of four kinds of materials such as flame retardant styrofoam, general styrofoam, urethane and gypsum board. And analyzed. As a result of the test, the ignition time (TTI) for the thermal insulation material was found at 27 s~43 s, and the flame retardant styrofoam was ignited at the lowest TTI at 27 s and disappears at 28 s. In addition, the maximum heat release rate (peak HRR) and average heat release rate (mean HRR) of each material were expressed in the following order: urethane> flame retardant styrofoam> styrofoam> gypsum board. Also, the total smoke release ($m^2/m^2$) was the largest at $30.798m^2/m^2$ in flame-retardant styrofoam. The general CO concentration of styrofoam was 0.275 kg/kg and the emission concentration was 12.807 kg/kg. The residues showed the highest 0.029 g in the gypsum board among the above materials.

The Combustion Gas Hazard Assessment of Main Building Materials (주요 건축 재료별 연소가스 유해성 평가)

  • Kim, Jong-Buk;Lee, Si-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.639-654
    • /
    • 2016
  • This study building materials by relates to human hazard assessment in accordance with the combustion gas SEM, the flame-retardant foam FTIR and cone calorimeter to configure the Forest products of MDF and preservative treated Lauan two kinds of Retardant styrofoam, Styrofoam, Urethane foam and gypsum board four kinds of plastics material by the combustion gas were each analyzed. MDF was burned to the structure of the wood and the glue evenly mixed combustion area preservative treated Lauan, kept constant even in the form of high heat to penetrate deep into the wood flame retardant agents. Retardant styrofoam is due to feed my Dropped dissolved inorganic flame retardant without the fire-stick and confirmed that the weak form of gypsum board, but keep the column. In MDF ammonia ($NH_3$), lethal concentration (750 ppm) compared to 795 ppm, preservative treated Lauan is carbon dioxide ($CO_2$) that was greater than 2.5 times the lethal concentration (100,000 ppm) to 256,965 ppm, the lethal concentration (500 ppm) of hydrogen chloride (HCl). The Urethane greater than 697 ppm, 434 ppm also greatly exceeding the nitrogen dioxide ($NO_2$) lethal concentration (250 ppm) in Retardant styrofoam and 398 ppm was released. It is confirmed that the human body is extremely harmful gas emitted from most of the materials to be utilized as basic data for evaluating the hazard-specific human future building material.

A Characteristic Study of Inorganic Insulation Using Balloon Pearlite (발룬 펄라이트를 사용한 무기단열재의 특성 연구)

  • Jeon, Chanki;Park, Jongpil;Chung, Hoon;Lee, Jaeseong;Shim, jaeyeong
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.3
    • /
    • pp.292-299
    • /
    • 2016
  • The insulation in buildings is very important. Insulation used in the building is largely divided into organic and inorganic insulation by its insulation material. Organic insulations material which are made of styrofoam or polyurethane are extremely vulnerable to fire. On the other hand, inorganic insulation such as mineral-wool and glass-wool are very week with moisture while they are non-flammable so that its usage is very limited. In this study, inorganic heat insulating material developed and the properties of thermal conductivity evaluated. The thermal conductivity and the water absorption of the sample in less than 50mm thickness of the board is less than 0.05W/mk, 3.0%. Bending strength and the water repellency is more than $25N/cm^2$, 98%.