• Title/Summary/Keyword: 우라늄 농도

Search Result 144, Processing Time 0.026 seconds

Atom Number Densities for Uranyl Nitrate Solution (질산우라늄용액의 구성원소별 원자수밀도)

  • Seung Gy Ro;Duck Kee Min;Jung-Kyoon Chon
    • Nuclear Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.103-109
    • /
    • 1982
  • An empirical formula for determining water content as functions of uranium concentration and nitric acid normalities in uranyl nitrate solutions has been derived from a least-squares analysis of experimental data, i.e., uranium concentration, nitric acid normalities and solution densities for a large number of UO$_2$(NO$_3$)$_2$ solutions. The formula derived is Q=1-0.3628C-0.0327H$^{+}$ where Q, C, and H$^{+}$ stand for water content (g/cc), uranium concentration (g/cc), ana nitric acid normality, respectively. Atom number densities and nuclear criticality for hypothetical uranyl nitrate solutions have been calculated by using the empirical formula, ana compared with the results obtained on the basis of uranium concentration, nitric acid normality, and solution density. The empirical formula derived in this study seems to be useful in uranium concentrations ranging from 0.295g/cc down to 0.004g/cc and nitric acid normality from 5.06 to 1.00..00.

  • PDF

Oxidation Experiment of U-Ti Chip for the Treatment of Depleted Uranium Waste (감손우라늄 폐기물 처리를 위한 U-Ti 칩의 산화실험)

  • 강권호;정경환;문제선;김길정
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.103-106
    • /
    • 1999
  • 감손우라늄(depleted uranium, DU)은 천연 우라늄에서 핵분열 물질인 U-235를 농축하는 과정에서 발생한다. U-235의 농도가 0.45%인 감손우라늄의 비방사능은 천연우라늄의 약70.8%에 분과하나 감손우라늄은 밀도가 19g/㎤으로 높고 천연우라늄에 비해 U-235의 농도가 상대적으로 낮기 때문에 외국의 경우는 방사선의 차폐체, 비행기나 헬리콥터 및 미사일의 무게중심제(counter-weight)로 사용되며 또한 플라이 휠 등 큰 내부에너지 저장을 위한 장치 등에 널리 이용되고 있다.(중략)

  • PDF

Remote Real-Time Uranium Concentration Measurement Using the Nitrogen Laser and optode (질소레이저와 광섬유를 이용한 원격제어 실시간 우라늄 농도 측정)

  • Lee, Sang-Mock;Shin, Jang-Soo;Lee, Su-Mi;Koh, Kwang-Nak;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.362-368
    • /
    • 1997
  • The remote real-time uranium concentration analysis using nitrogen laser, optode, photomultiplier and optical fiber is studied. The optode for the remote collection of uranium fluorescence is designed. The fluorescence intensity at time zero is calculated in order to exclude the quenching effect and the temperature fluctuation and used for more precise estimation. The fluorescence change is very sensitive to the uranium concentration change. The method shows the detection limit of 0.06ppm and the linearity between 0.1ppm and 2ppm of the aqueous uranium concentration.

  • PDF

Study on therapeutic application of toxicity of Uranylnitrate in rats (천연 우라늄 독성에 관한 치료 연구)

  • Ryu, Yong-Wun;Lee, Jhin-Oh;Yun, Taik-Koo
    • Journal of Radiation Protection and Research
    • /
    • v.12 no.2
    • /
    • pp.9-18
    • /
    • 1987
  • The present study has determined BUN, createinine, c-AMP and $PGE_2$ activities as a clinical signs of radiation toxicity caused by uranylnitrate in rats. The significant increasing of $PGE_2$ concentration in plasma between the administration of uranylnitrate and lead nitrate were shown radiotoxic in nature on the effect of radiation energy. The reduction of PGE activities in plasma in uranylnitrate treated rats after furosemide, aldosterone and glucagone I.P. administration have observed the stimulating effect of uranium excretion into cells.

  • PDF

Distribution of Uranium in the Han River and Behavior through the Water Treatment Process (우라늄(Uranium)의 한강수계내 분포와 정수처리 공정별 거동 특성)

  • Jeong, Gwan-Jo;Kim, Dok-Chan;Park, Hyeon;Oh, Sea-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.347-352
    • /
    • 2005
  • This research was focused on the distribution of Uranium-238 concentration in the Han River. Also, six water treatment plants in Seoul have been investigated to find out the behaviour and the removal capability of uranium. The uranium concentrations were ranged $0.02{\sim}0.54{\mu}g/L$ in the Han River. The relationship between conductivity and total dissolved solids shows that uranium concentration is positively related with conductivity and total dissolved solids. In addition, it has been founded that there was no relevance between uranium concentration and geological structure, because most of the sampling area are Banded Gneiss. The average uranium concentration in six water treatment plants was determined to $0.134\;{\mu}g/L$ in raw water, $0.050\;{\mu}g/L$ in coagulated water, $0.029\;{\mu}g/L$ in settled water, $0.020\;{\mu}g/L$ in filtered water, $0.019\;{\mu}g/L$ in finished water. After filtration in the treatment process, uranium concentration level was maintained lower than $0.029\;{\mu}g/L$. The average uranium removal efficiency compared to the raw water was 63% after coagulation, 15% after sedimentation, 8% after filtration and disinfection. The analysis shows that 78% of uranium in the raw water was removed during coagulation and sedimentation processes. However, 8% of that was removed through filtration and chlorination processes.

A Study on Treatment of Wastes from the Uranium Ore Dissolution/purification and Nuclear Fuel Powder Fabrication (우라늄 정광의 용해/정제 및 핵연료 분말 가공공정에서 발생된 폐액의 처리에 관한 연구)

  • Jeong, Kyung-Chai;Hwang, Seong-Tae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.99-107
    • /
    • 1997
  • This study Provides the treatment methods of liquid wastes from the dissolution/purification process of nuclear fuel raw material and the fabrication process of nuclear fuel powder. One of the treatment methods is to process liquid waste from uranium raw material dissolution/purification process. This waste, of the strong acid, can be reused to dissolve the fine ADU particles in filtrate which is ADU waste of pH 8.0 converted from AUC waste after recovery of uranium. To dissolve the fine ADU particles, ADU filtrate was pretreated to pH 4.0 with the dissolution/purification waste, and then mixed with the lime to pH 9.2 and aged for 30 minutes. From this processing, uranium content of the filtrate was decreased to below 3ppm. The waste from fuel powder fabrication is emulsified solution dispersed with fine oil droplets. This emulsion was destroyed effectively by adding and mixing the nitric acid with rapid heating at the same time. After this processing, $Na_2U_2O_7$ compound is produced by addition of NaOH. Optimum condition of this processing was shown at pH 11.5, and uranium content of the filtrate was analyzed to 5ppm. To remove the trace of uranium in the filtrate, lime should be added. Otherwise, 4N nitric acid was used to destroy the emulsion directly, and then lime was added to this waste. Uranium content of the treated filtrate was below 1 ppm. In addition to these wastes, the trace of uranium in filtrate after recovery of uranium from the AUC waste which is produced during PWR power preparation, is treated with NaOH to takeup fluorine(F) in the waste because fluorine is valuable and toxic material. In the finally treated waste, uranium was not detected.

  • PDF

The Uranium Removal in Groundwater by Using the Bamboo Charcoal as the Adsorbent (대나무 활성탄을 흡착제로 활용한 오염지하수 내 우라늄 제거)

  • Lee, Jinkyun;Kim, Taehyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.531-542
    • /
    • 2018
  • Batch sorption experiments were performed to remove the uranium (U) in groundwater by using the bamboo charcoal. For 2 kinds of commercialized bamboo charcoals in Korea, the U removal efficiency at various initial U concentrations in water were investigated and the optimal sorption conditions to apply the bamboo charcoal were determined by the batch experiments with replicate at different pH, temperature, and reaction time conditions. From results of adsorption batch experiments, the U removal efficiency of the bamboo charcoal ranged from 70 % to 97 % and the U removal efficiency for the genuine groundwater of which U concentration was 0.14 mg/L was 84 %. The high U removal efficiency of the bamboo charcoal maintained in a relatively wide range of temperatures ($10{\sim}20^{\circ}C$) and pHs (5 ~ 9), supporting that the usage of the bamboo charcoal is available for U contaminated groundwater without additional treatment process in field. Two typical sorption isotherms were plotted by using the experimental results and the bamboo charcoal for U complied with the Langmuir adsorption property. The maximum adsorption concentration ($q_m:mg/g$) of A type and C type bamboo charcoal in the Langmuir isotherm model were 200.0 mg/g and 16.9 mg/g, respectively. When 2 g of bamboo charcoal was added into 100 mL of U contaminated groundwater (0.04 ~ 10.8 mg/L of initial U concentration), the separation factor ($R_L$) and the surface coverage (${\theta}$) maintained lower than 1, suggesting that the U contaminated groundwater can be cleaned up with a small amount of the bamboo charcoal.

Analysis of Uranium Concentrations in Urine Samples Using Alpha Spectrometry and Dose Assessment (알파분광분석법을 이용한 소변시료 중 우라늄 농도 분석 및 선량평가)

  • Lee, Na-Rae;Han, Seung-Jae;Cho, Kun-Woo;Jeong, Kyu-Hwan;Lee, Dong-Myung
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.3
    • /
    • pp.138-142
    • /
    • 2013
  • This study was conducted to measure the uranium concentrations in urine of some members of the general public in Busan and Daejeon and to assess the annual committed effective doses from uranium analysis of daily excretion. As a result, the ranges of total uranium concentrations in the urine for the residents in Busan and Daejeon were found to be 0.556 - 1.53 $mBq\;L^{-1}$ and 2.18 - 4.55 $mBq\;L^{-1}$, respectively. It was noted that the uranium concentrations for the residents in Daejeon were observed to be higher than those for the residents in Busan. This result assumes that the uranium concentrations in the urines for the residents in Daejeon are probably related to the high uranium concentrations contained in the drinking water of Daejeon city. The bedrock of Daejeon, known as granitic rocks formed in the Jurassic period of the Mesozoic Era, contains high uranium contents. Also, results showed no significant correlation with age or sex. The ranges of annual committed effective doses from ingestion of uranium for the residents in Busan and Daejeon were calculated to be 0.472-1.41 ${\mu}Sv$ and 1.99-4.15 ${\mu}Sv$, respectively.

핵분열 트랙기입법을 이용한 환경 시료 중의 미량 우라늄 분석

  • 표형열;이상경;이창헌;한선호;박용준
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.418-418
    • /
    • 2004
  • 풀, 토양 또는 지하수와 같은 환경시료 중에 포함된 미량 우라늄을 분석하기 위하여 핵분열 트랙 기입법을 이용하였다. 시료 전처리 방법으로 지하수 시료는 질산 산성으로 만든 후, 토양시료는 질산과 불산을 이용하여 용액화 하였으며, 풀 시료는 전기로를 이용하여 회화한 후, 질산과 불산을 이용하여 용액화 하였다. 이 환경시료 전처리용액들을 각각 0.1mL를 0.9mL Collodion 분산용액에 섞은 후, 우라늄 표준용액과 함께 플라스틱 판($6{\times}6\textrm{cm}^2$) 위에 10$\mu\textrm{\ell}$씩 점적, 건고 시키고 핵분열 트랙기입법을 이용하여 우라늄 농도를 분석하였다. 핵분열 트랙기입법을 위한 중성자조사는 한국원자력연구소 하나로 연구용원자로(열중성자 선속: $2.7{\times}10^{13}n/\textrm{cm}^2{\cdot}sec^{-1}$)에서 10분간 하였으며, 6.25M NaOH 용액($60^{\circ}C$)을 이용하여 10분간 화학 에칭 하였다. 고체트랙검출기 표면에 생성된 핵분열 트랙들은 광학현미경과 image analyzer system을 이용하여 관찰하고 계수하였다. 시료와 같이 점적한 우라늄 표준용액을 이용하여 우라늄 농도에 대한 단위면적당 트랙 수의 상관관계를 구하였으며, 이를 이용하여 시료 내 우라늄 농도를 결정하였다. 본 실험의 결과에 대한 검증을 위하여 동일 시료용액을 분리관을 이용한 전처리 과정을 거친 후 ICP-MS를 이용하여 분석하였다. 우라늄의 선택적 분리를 위하여 U-TEVA 추출크로마토그래피 분리관을 이용하였다. 본 연구의 핵분열 트랙기입법을 이용하여 환경시료를 분석하는 방법은 일반적인 분광법을 이용할 경우, 문제가 되는 방해 원소의 분리를 위한 전처리 과정이 불필요한 장점을 가지고 있으며, 1ng 정도의 미량 우라늄을 분석할 수 있었고, ICP-MS 결과와 20% 오차 이내에서 일치하였다.

  • PDF