• Title/Summary/Keyword: 우라늄화합물

Search Result 30, Processing Time 0.046 seconds

Identification of Uranium Species Released from the Waste Glass in Contact with Bentonite

  • Kim Seung-Soo;Chun Kwan-Sik;Kang Chul-Hyung;Han Phil-Su;Choi Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.177-181
    • /
    • 2005
  • Yellowish uranium compounds were enriched at the interface between a Ca-bentonite block and a waste glass, containing about $20\%$ uranium oxide, in contact with the block due to the dissolution of uranium by a synthetic granitic groundwater in Ar atmosphere. The uranium compound formed for 6 years leach time was identified as a beta-uranophane $[Ca(UO_2)_2(SiO_{3}OH)_{2}5H_{2}O]$ using XRD, IR and mass spectrometer. The solubility of the beta-uranophane was measured to be about $10^{-6}\;mole/L$ in de-mineralized water at $80^{\circ}C$.

  • PDF

Research and Development for the Recovery of Uranium and Vanadium from Korean Black Shale Ore (국내(國內) 흑색(黑色) 점판암으로부터 우라늄 및 바나듐 회수(回收)의 연구개발(硏究開發))

  • Kim, Joon Soo
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.3-10
    • /
    • 2013
  • This general paper covers three parts of the uranium research and development. Part one covers scope of research and development of uranium ore and future prospect, supply and demand of uranium in the world market, deposit, grade and properties of Korean uranium ore and the second part covers status of previous study and supply target for yellow cake, technology of leaching, separation and preparation, procedure of the recovery of U / V from Korean black shale ore. Final part concludes the summary of the present discussion.

A study on the electrodeposition of uranium using a liquid cadmium cathode at 440℃ and 500℃ (440℃와 500℃에서 액체카드뮴음극을 이용한 우라늄 전착에 관한 연구)

  • Yoon, Jong-Ho;Kim, Si-Hyung;Kim, Gha-Young;Kim, Tack-Jin;Ahn, Do-Hee;Paek, Seungwoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.3
    • /
    • pp.199-206
    • /
    • 2013
  • Electrowinning process in pyroprocessing recovers U (uranium) and TRU (Trans Uranium) elements simultaneously from spent fuels using a liquid cadmium cathode (LCC). When the solubility limit of U deposits over 2.35wt% in Cd, U dendrites were formed on the LCC surface during the electrodeposition at $500^{\circ}C$. Due to the high surface area of dendritic U, the deposits were not submerged into the liquid cadmium pool but grow out of the LCC crucible. Since the U dendrites act as a solid cathode, it prevents the co-deposition of U and TRUs. In this study, the electrodeposition of U onto a LCC was carried out at 440 and $500^{\circ}C$ to compare the morphology and component of U deposits. The U deposits at $440^{\circ}C$ have a specific shape and were stacked regularly at the center of the LCC pool, while the U dendrites (i.e., ${\alpha}$-phase) at $500^{\circ}C$ were grow out of the LCC crucible. Through the microscopic observation and XRD analysis, the electrodeposits at $440^{\circ}C$, which have a round shape, were identified as an intermetallic compound such as $UCd_{11}$. It can be concluded that the LCC electrowinning operation at $440^{\circ}C$ achieves the co-recovery of U and TRU without the formation of U dendrites.

The Solvent Extraction of Uranium(VI) and Other Metal Ions with Pyrazolone Chelating Agents -The Studios on the Rad-Waste Treatment(1)- (킬레이팅 화합물에 의한 우라늄의 용매추출 -방사성 폐기물 처리 처분 연구(I)-)

  • Hun Hwee Park;Nak June Sung
    • Nuclear Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.117-122
    • /
    • 1983
  • The chelating agent with $\beta$-diketo funtional group, 1-phenyl-3-methyl-4-acyl-pyrazolone-5-one, has been used in separating and extracting radionuclides in a waste solution. The derivatives of this pyrazolone compound, prepared by different acyl groups, were synthesized and examined to figure out the extracting ability for Uranium (VI) and Zirconium (IV). The product prepared with succinic anhydride, called succinyl pyrazolone, showed excellent extraction for uranium (VI) in a chloroform solvent system. This result indicates that acyl pyrazolones having carboxylic acid group as a functional group forming $\beta$-diketo functionality are very selective for uranium (VI) and generally other metal ions with high valency.

  • PDF

Uranium Recovery from Nuclear Fuel Powder Conversion Plant Filtrate and its Thermal Decomposition Characteristics (핵연료분말 제조공정에서 발생된 여액으로부터 우라늄 회수 및 회수된 우라늄 화합물의 열분해 특성)

  • Jeong, Kyung-Chai;Jeong, Ji-Young;Kim, Byung-Ho;Kim, Tae-Joon;Choi, Jong-Hyeun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.204-209
    • /
    • 2002
  • In this study, $UO_4{\cdot}2NH_4F$, the precipitates which has low solubility, was obtained by chemical precipitation method to recover and reuse the trace uranium from the liquid waste producing in AUC process and for this compound it was characterized by means of chemical analysis, TG-DTA, XRD and FT-IR analyses. This compound was analyzed as $UO_4{\cdot}2NH_4F$ and shape of this precipitate was hexagonal type, having the size of 2∼3 ${\mu}m$. Also, the intermediates were obtained as $UO_4F,\;UO_4,\;UO_3,\;and\;U_3O_8$ by the thermal decomposition over the temperature of 220, 310, 515 and 640$^{\circ}C$, respectively. It is concluded that under the condition of a constant heating rate of 5$^{\circ}C$/min in air atmosphere range of between room temperature and 800$^{\circ}C$, thermal decomposition reaction mechanism of $UO_4{\cdot}2NH_4F$ is as follow; $UO_4{\cdot}2NH_4F{\rightarrow}UO_4F{\rightarrow}UO_4{\rightarrow}UO_3{\rightarrow}U_3O_8$.

Uranium Residues Monitoring System (불용 핵물질 원격 방호 및 모니터링 시스템 구축)

  • Cho, Woon-Hyoung;Park, Seung-Kook;Choi, Yun-Dong;Lee, Kue-Il;Moon, Jei-Kwon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.828-831
    • /
    • 2012
  • 한국원자력연구원내에는 연구실험 목적용으로 사용된 후 용도 폐기된 각종 우라늄 화합물이 수요가 증대 되어온 바, 이러한 불용 우라늄 화합물의 저장관리에 대한 체계적인 시스템의 구축이 필요하게 되었다. 이에 한국원자력연구원에서는 불용 핵물질 원격 물리적 방호시스템, UReMon(Uranium Residues Monitoring System)을 개발하였는데 이는 방사성 물질인 불용 우라늄 화합물의 물리적 방호와 관리 및 도난 방지의 목적을 지닌다. UReMon은 기존 모니터링 서비스에서 자주 사용되던 RFID나 바코드가 가지는 기술적 문제로 인한 위치확인, 도난, 훼손 등의 실태 파악에 소요되는 많은 시간과 경비를 줄이기 위하여 USN 센서와 Zigbee를 이용하여 한국원자력연구원에 기 구축되어 있는 USN기반 화재 예방시스템(KAERI-uFIPI)과의 연계를 통해 불용 핵물질의 모니터링, 위치 추적 및 재고관리의 효율성을 높인다. UReMon은 연구원 내 물리적 방호 시스템, 핵 물질 및 RI 관리, 출입통제 시스템 등에도 효율적으로 적용 가능하며, 향후 이에 대한 적용성 평가를 수행할 예정이다.

감손우라늄 폐기물 처리를 위한 공기조절식 산화장치 개발(I)

  • 강권호;김길정;박영무
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.491-496
    • /
    • 1996
  • 감손우라늄 폐기물은 칩의 형태로 발생하며 이들은 열적으로 불안정하여 운반 및 저장에 주의를 요하게 된다. 본 연구에서는 감손우라늄 폐기물의 안정한 처리를 위해 공기조절식 산화 장치를 개발하고 장치의 운전에 필요한 기초 자료를 얻기 위해 산화실 험을 수행하였다. 저장 및 처분시 가장 안정한 화합물인 U$_3$O$_{8}$ 으로 변환되는 산화온도는 약 3$25^{\circ}C$ 이상이며 산화속도는 다음과 같다.

  • PDF

Electrochemical Decontamination of Metallic Wastes Contaminated with Uranium Compounds (우라늄화합물로 오염된 금속폐기물의 전해제염)

  • 양영미;최왕규;오원진;유승곤
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.11-23
    • /
    • 2003
  • A study on the electrolytic dissolution of SUS-304 and Inconel-600 specimen was carried out in neutral salt electrolyte to evaluate the applicability of electrochemical decontamination process for recycle or self disposal with authorization of large amount of metallic wastes contaminated with uranium compounds generated by dismantling a retired uranium conversion plant in Korea. Although the best electrolytic dissolution performance for the specimens was observed in a Na2s04 electrolyte, a NaNO$_3$ neutral salt electrolyte, in which about 30% for SUS-304 and the same for Inconel-600 in the weight loss was shown in comparison with that in a Na$_2$SO$_4$ solution, was selected as an electrolyte for the electrochemical decontamination of metallic wastes with the consideration on the surface of system components contacted with nitric acid and the compatibility with lagoon wastes generated during the facility operation. The effects of current density, electrolytic dissolution time, and concentration of NaNO$_3$ on the electrolytic dissolution of the specimens were investigated. On the basis of the results obtained through the basic inactive experiments, electrochemical decontamination tests using the specimens contaminated with uranium compounds such as UO$_2$, AUC (ammonium uranyl carbonate) and ADU (ammonium diuranate) taken from an uranium conversion facility were performed in 1M NaNO$_3$ solution with the current density or In mA/$\textrm{cm}^2$. it was verified that the electrochemical decontamination of the metallic wastes contaminated uranium compounds was quite successful in a NaNO$_3$ neutral salt electrolyte by reducing $\alpha$ and $\beta$ radioactivities below the level of self disposal within 10 minutes regardless of the type of contaminants and the degree of contamination.

  • PDF