• Title/Summary/Keyword: 용존유기물질

Search Result 144, Processing Time 0.029 seconds

Co-precipitation of Turbidity and Dissolved Organic Matters by Coagulation (응집(凝集)에 의한 탁도물질(濁度物質) 및 용존(溶存) 유기물질(有機物質)의 동시제거(同時除去)에 대한 연구(硏究))

  • Jeong, Sang-Gi;Jun, Hang-Bae;Kim, Hag-Seong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.3
    • /
    • pp.99-107
    • /
    • 1995
  • Various humic substances are widely distributed in natural water body, such as rivers and lakes and cause the yellowish or brownish color to water. The evidence that humic substances are precursors of THMs formation in chlorinated drinking water has been reported m the Jiteratures. For the reason of public health as well as aesthetics, needs for humic substances removal have been increased in the conventional water treatment processes. In this research, the characteristics of aluminium coagulation of humic acids and humic acids were investigated. The optimum pH and coagulants dosage to remove these materials simultaneously by coagulation were alto studied. The results are as followed; 1. UV-254 absorptiometry for measuring the concentration of aquatic humic acids showed good applicability and stable results. 2. The optimal pH range for humic acids removal by aluminium coagulation was 5 to 5.5, however, an increase in aluminium coagulant dosage could enhance the removal rate of humic acids in the wide pH range. 3. Coprecipitation of humic acids in the typical pH range of 6.5 to 8 in water treatment processes may require the sweep coagulation mechanism with the excess aluminium coagulant dosage. 4. Using PAC(poly aluminium chloride) or PASS(poly aluminium silica sulfate) as coagulants was able to expand the operating range for removing humic acids. 5. From the coagulation of humic substances(UV-254) and turbidity at pH range of 5.5 - 6.0 and alum dose of 86 ppm, the removal efficiency of turbidity from the reservoir water was above 90% and that of UV-254 was above 70%. 6. By using the reservoir water, the optimum condition of rapid mixing for simultaneous removal of turbidity and UV-254 absorbance was pH of 5.8 and LAS dose of 86 ppm, in this study.

  • PDF

Spatial Distribution of Pigment Concentration Around the East Korean Warm Current Region Derived from Satellite Data - Satellite Observation in May 1980 - (위성원격탐사에 의한 동한난류 주변 해역의 색소농도 공간적 분포 -1980년 5월 관측을 중심으로 -)

  • Kim Sang Woo;Saitoh Sei-ich;Kim Dong Sun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.265-272
    • /
    • 2002
  • Spatial distribution of Phytoplankton Pigment Concentration (PPC) and Sea Surface Temperature (SST) around the East Korean Warm Current (EKWC) was described, using both Coastal Zone Color Scanner (CZCS) images and Advanced Very High Resolution Radiometer (AVHRR) images in May, 1980. Water mass in this region can be classified into five categories in the horizontal profile of PPC and SST, nLw (normalized water-leaving radiance) images: (1) coastal cold water region associated with concentrations of dissolved organic material or yellow colored substances and suspended sediments, (2) cold water region of thermal frontal occurred by a combination of phytoplankton absorption and suspended materials, (3) warm water overlay region by the phytoplankton absorption than the suspended materials; (4) warm water region occurred by the low phytoplankton absorption, and (5) offshore region occurred by the high phytoplankton absorption. In particular, the highest PPC (>2.0 mg/m^3) area appeared in the CZCS and AVHRR images with a band shaped distribution of the thermal front and ocean color front region, which is located the coastal cold waters alonB western thermal front of the warm streamer of the EKWC. In this region, the highest PPC occurred by a combination of the high absorption of the phytoplankton (443 nm) and highest reflectance of suspended materials (550 nm). Another high PPC ($\simeq$$6\;mg/m^3$) appeared in the warm water overlay region inside warm streamer. High phytoplankton pigment concentration of this region was corresponding to the short wavelength of 443 nm, which represented phytoplankton absorption of the CZCS image.

Effects of Dissolved Compounds in Groundwater on TCE Degradations Reaction by Nanoscale Zero-Valent Iron (나노영가철의 TCE 분해반응 시 지하수 용존물질의 영향)

  • Kim, Tae-Ho;Kim, Hong-Seok;Lee, Jin-Yong;Cheon, Jeong-Yong;Lee, Kang-Kun;Hwang, In-Seong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.413-419
    • /
    • 2011
  • Nanoscale zero-valent iron (NZVI) particles were tested as remediation media for groundwater contaminated by organic pollutants (e.g., TCE, trichloroethylene). The contaminated groundwater contained anions ($NO_3^-$, $Cl^-$, $SO_4^{2-}$, and $HCO_3^-$) and natural organic matter (NOM). Treatability of commercial NZVI particles (NANOFER 25, Nanoiron, Czech) was tested by using a synthetic groundwater and the field groundwater samples. More than 95% of 1.8 mM TCE was removed within 20 hours with a NZVI dosage of 25 g/L ($k=0.15hr^{-1}$). Repetitive degradation experiments revealed that the removal capacity of NANOFER 25 was 0.19 mmole TCE/g NZVI. TCE degradation reactions were not substantially affected by the presence of each anion with concentrations as high as 100 times the average field concentrations. However, when the four anions ($NO_3^-$, $Cl^-$, $SO_4^{2-}$, $HCO_3^-$) were present simultaneously. the degradation reactivity and removal capacity were decreased by 60% ($k=0.069hr^{-1}$) and 10%, respectively. The k value of TCE degradation in the presence of NZVI (25 g/L) with dissovled organic carbon of 2.5 mg/L was also decreased by 84% ($k=0.025hr^{-1}$). In the experiments with the field groundwater, more than 90% of $1.8{\mu}M$ TCE, which is the concentration of TCE at the source zone, was removed within 10 hours with a NANOFER 25 dosage of 25 g/L. The results imply that the contaminated groundwater can effectively be treated by NANOFER 25 with more information on the hydrogeology of the site.

Effect on nitrogen removal in the intermittent aeration system with the anaerobic archaea added (혐기성 아키아 주입이 간헐폭기 시스템에서 질소제거에 미치는 영향)

  • Lee, Sang-Hyung;Park, Noh-Back;Park, Sang-Min;Jun, Hang-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1186-1192
    • /
    • 2005
  • The relationship between bacteria and anaerobic archaea, sludge yield coefficient and nitrogen removal rate were investigated in intermittent aeration systems(I/A) with added archaea, I/A and conventional activated sludge system. As the archaea solution was added to the I/A reactor, organic removal rate as well as nitrogen removal rate increased. Also, sludge production rate in I/A system added the archaea was maintained lower than other systems because sludge yield coefficient was decreased due to the role of anaerobic archaea such as anaerobic degradation of organics. The experimental data supported the possibility of symbiotic activated sludge system with anaerobic archaea under intermittent aeration, leading to the enhanced nitrogen removal. Crucial results to be presented are: 1) specific oxygen utilization rate(SOUR) of the I/A-arch system was $2.9\;mg-O_2/(g-VSS{\cdot}min)$. SOUR and nitrification rate of the sludge from the I/A-arch system was higher than those from the I/A and A/S reactors. 2) Removal efficiencies of $TCOD_{Cr}$ in the I/A-arch, I/A and A/S reactors were 93, 90 and 87%, respectively. 3) Nitrification occurred successfully in each reactor, while denitrification rate was much higher in the I/A-arch reactor. Efficiencies of TN removal in the I/A-arch, I/A and A/S reactors were 75, 63 and 33%, respectively.

Polycyclic Aromatic Hydrocarbon (PAH) Binding to Dissolved Humic Substances (HS): Size Exclusion Effect

  • Hur, Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.12-19
    • /
    • 2004
  • Binding mechanisms of polycyclic aromatic hydrocarbons (PAHs) with a purified Aldrich humic acid (PAHA) and its ultrafiltration (UF) size fractions were investigated. Organic carbon normalized binding coefficient ($K_oc$) values were estimated by both a conventional Stern-Volmer fluorescence quenching technique and a modified fluorescence quenching method. Pyrene $K_oc$ values depended on PAHA concentration as well as freely dissolved pyrene concentration. Such nonlinear sorption-type behaviors suggested the existence of specific interactions. Smaller molecular size PAH (naphthalene) exhibited higher $K_oc$ value with medium-size PAHA UF fractions whereas larger size PAH (pyrene) had higher extent of binding with larger PAHA UF fractions. The inconsistent observation for naphthalene versus pyrene was well explained by size exclusion effect, one of the previously suggested specific mechanisms for PAH binding. In general, the extent of pyrene binding increased with lower pH likely due to the neutralization of acidic functional groups in HS and the subsequent increase in hydrophobic HS region. However, pyrene $K_oc$ results with a large UF fraction (>100K Da) corroborated the existence of the size exclusion effect as demonstrated by an increase in $K_oc$ values at a certain higher pH range. The size exclusion effect appears to be effective only for the specific conditions (HS size or pH) that render HS hole st겨ctures to fit a target PAH.

A Study on Dissolve and Remove Analysis of Organic Chemicals Using a Mixed Method of Advanced Oxidation and Micro Filtering - Water Drinking Point - (고도산화와 정밀여과의 혼성공법을 이용한 유기화학물질의 분해 및 제거분석에 관한 연구 - 먹는 물을 중심으로 -)

  • An, Tai-Young;Jun, Sang-Ho;Ahn, Tae-Seok;Han, Mi-Ae;Hur, Jang-Hyun;Pak, Mi-Young
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.99-111
    • /
    • 2007
  • It is impossible to remove toxic organic substances that are recognized as a cancer caused suspicious element in drinking water using the conventional water purification method. This study introduces groundwater into a reaction chamber as an effective amount of water to process this water using a mixed method of AOP oxidation and M/F membrane and purifies it as a desirable level by artificially mixing such toxic substances in order to effectively process the water. Based on this fact, this study configures an optimal operation condition. The VOCs existed in toxic substances was investigated as a term of phenol and toluene, and agricultural chemicals were also investigated as a term of parathion, diazinon and carbaryl. The experiment applied in this study was performed using a single and composite soolution. In the operation condition applied to fully dissolve and remove such substances, the amount of $H_2O_2$ injected in the process was 150 mL of a fixed quantity, the value of pH was configured as $5.5{\sim}6.0$, the temperature was controlled as a range of $12{\sim}16^{\circ}C$, the dissolved amount of ozone was applied more than 5.0 mg/L, the reaction time was determined as an optimal condition, such as $30{\sim}40$ minutes, and the segregation membrane in the same reactor was determined for acquire water drinking of large quantity using a pore size of $0.45{\mu}m$ M/F membrane.

가교키토산 복합막을 이용한 에틸렌글리콜/물 혼합액의 투과증발분리

  • 남상용;이영무
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.82-83
    • /
    • 1996
  • 키토산 막을 이용한 유기혼합물 중의 물을 효율적으로 분리해내는 투과증발공정은 많은 발전을 거듭해 왔으며, 특히 에탄올중의 물을 효율적으로 탈수하는 것에는 탁월한 성능을 보고한 바 있다. 키토산은 주로 게등의 갑각류의 외피에서 얻을 수 있는 키닌을 주원료로 하는 물질로서 친수성이 뛰어난 막재료뿐만 아니라 생체적 합성이 요구되는 생체재료로도 널리 사용이 되고 있는 물질이다. 에틸렌즐리콜은 석유화학공정에서 생성되는 에틸렌 옥시이드를 원료로 하여 제조가 되고 있는 물질이다. 에틸렌글리콜은 PET의 원료로서 사용이 많이 되고 있으며, 겨울철에는 자동차등의 부동액이나 눈이 많이 내리는 지역에서 효율적으로 눈을 제거하기 위하여 공항의 활주로등에서 주로 사용이 되고 있는 물질이다. 에틸렌글리콜의 제조공정중에서 물을 효과적으로 제거하는 방법으로는 증류법이 있을 수 있으나 에틸렌글리콜의 비점이 물보다 현저히 높기 때문에, 공비혼합물을 생성하지 않는 이 혼합물의 특성과는 무관하게, 투과증발법을 이용할 경우 에너지의 절감이 이루어지게 되기 때문에 매우 효용적이고 추천할만할 공정이다. 또한 활주로의 부동액등으로 사용되는 경우 에틸렌글리콜의 재활용이 이루어질 경우 경비의 절감이나 환경적인 문제의 해결등의 장점이 있어서 물의 분리가 요구되고 있다. 이 경우에는 마찬가지로 에틸렌글리콜과 물의 분리는 일반적인 분리에 비해서 투과증발법이 유용하다고 할 수 있다. 본 실험에서는 키토산 막의 효율적인 응용예로서 기존의 알콜의 탈수와 더불어서 에틸렌글리콜의 탈수를 고찰해보고자 하였다.관리가 간편하며, 용존산소량을 줄일수 있다는 점에서 장점이 있으나, 전 ultra pure water의 system이 열적으로 안정해야 하고 경제적인 문제가 수반하는 단점을 가지고 있다. 후자의 경우, 미량의 과산화수소수 (1~10,000 ppm)를 이용해 처리 해주는 방법의 경우 경제적으로 큰 장점이 있고, 처리가 단순하다는 장점이 있으나 과산화수소수 자체에 포함하고 있는 높은 impurit level, 그리고 처리후 장시간의 flushing time을 가져야 한다는 단점등이 존재 하고 있다.요구된다. 몰입이 가능하여 임계치가 저하된 것으로 여겨진다. 또한 광학적 이득의 존재는 이 구조에 의한 극단파장 반도체 레이저다이오드의 실현 가능성을 나타내는 것이다.548 mL에 비해 통계학적으로 의의 있게 적었다(p<0.05). 결론: 관상동맥우회로 조성수술에서 전방온혈심정지액을 사용할 때 희석되지 많은 고농도 포타슘은 fliud overload와 수혈을 피하고 delivery kit를 사용하지 않음으로써 효과적이고 만족할 만한 심근보호 효과를 보였다.를 보였다.4주까지에서는 비교적 폐포는 정상적 구조를 유지하면서 부분적으로 소폐동맥 중막의 비후와 간질에 호산구 침윤의 소견이 특징적으로 관찰되었다. 결론: 분리 폐 관류는 정맥주입 방법에 비해 고농도의 cisplatin 투여로 인한 다른 장기에서의 농도 증가 없이 폐 조직에 약 50배 정도의 고농도 cisplatin을 투여할 수 있었으며, 또한 분리 폐 관류 시 cisplatin에 의한 직접적 폐 독성은 발견되지 않았

  • PDF

A Case Study Stormwater Treatment by Channel-Type Wetland Constructed on the Flood Plane of the Stream (하천 고수부지에 설치한 수로형 인공습지에 의한 강우 유출수 처리에 관한 연구)

  • Kim, Piljoo;Han, Euilyung;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.80-89
    • /
    • 2017
  • Researches about NPS(Non-point Pollution Source) reduction have been widely carried out in recent years. A pilot channel-type constructed wetland (wet swale) was constructed in Rongyin area to treat stormwater generated from a green house agro-land of 22.7 ha. From 2006 to 2008, monitoring was conducted to evaluate its performance on the removal effect for organic pollutants as well as nutrients. Totally, sampling trips of 17 rainfall events were made and they covered most types of storm events in Korea. The channel-type constructed wetland have average removal efficiencies of 78.3~92.0%, 56.4~66.1%, 28.2~45.5% and 50.6~66.4% for SS, COD, TN and TP, respectively. According to four methods for estimating the removal efficiency, the average efficiencies of TSS, COD, TN and TP are 86.0%, 60.1%, 30.1% and 53.5%, respectively. From 2006 to 2008, annual efficiency improved due to infiltration potential increase. It was found that most of the pollutants removed in this channel type of wetland was particulate solids bound pollutants, which is assumed fact that it lacks of physico-chemical treatment conditions which are commonly observed in the retention type of constructed wetlands.

Removal of Dissolved Humic Acid with Physicochemical Treatment Process (물리화학적 공정에 의한 용존성 Humic Acid의 제거)

  • Kim, Jong-Shik;Choi, Joon-Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.737-742
    • /
    • 1999
  • This study was conducted for the two purposes; one was removal of dissolved humic acid, the well-known precursor of trihalomethanes (THMs), by physicochemical treatment processes such as ozone oxidation, coagulation and activated carbon adsorption. The other was qualitative identification of by-products in chlorination of the dissolved humic acid. When ozone oxidation was applied to remove the dissolved humic acid, pH was abruptly decreased. It was indicated that humic acid was not perfectly converted to $CO_2$ and $H_2O$, but to low fatty acid. In coagulation process, the coagulant was polyaluminumchloride which was widely used for drinking water treatment in recent years. With the dosage of 160 mg/L, total organic carbon(TOC), $COD_{Cr}$ and color were removed with 23%, 24% and 5% respectively. Color was effectively removed by ozone oxidation process, which was the first order reaction, with the reaction rate constant of $0.067min^{-1}$. In activated carbon adsorption process, preozonation process could remove more effectively the dissolved humic acid than that without preozonation. When the dissolved humic acid and sodium hydrochloride were reacted with 1 mg-NaOCl/mg-TOC, only trihalomethanes were detected.

  • PDF

Oxygen Transfer System in Biological Fluidised Bed Using the Deep Shaft as Aeration Device (생물학적(生物學的) 유동층(流動層)을 이용(利用)한 폐수처리(廢水處理)에 있어서의 심층(深層) 폭기장치(曝氣裝置)에 의한 산소전달(酸素傳達) 시스템)

  • Kim, Hwan Gi;Ahn, Song Yeob;Jeong, Tae Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.13-24
    • /
    • 1988
  • This paper is concentrated on the development of oxygen transfer system by U-tube deep shaft in biological fluidised bed process. The depth of the shaft is 32 m, it is composed of downcomer and riser. Not only flow pattern and oxygen transfer in the deep shaft but also oxygen limitation in biofilm and oxygen utilization in biological fluidised bed are investigated. In this investigation, driving force for liquid circulation in the deep shaft is affected by air injection depth and gas hold-up in downcomer. Flow pattern of the deep shaft is revealed to plug flow. When flow velocity in the deep shaft is maintained to 0.52 m/sec, $K_La$ value is peak at 25~30 m depth in riser. The efficiency of dissolved oxygen supply which passed from the deep shaft to biological fluidised bed is estimated to 56~81 % in the organic wastewater treatment using the deep shaft and when dissolved oxygen concentration is 9.2 mg/l and over, limiting factors of flux and substrate within biofilm are organic materials. Terefore, organic loadings could be increase without decreasing of BOD removal efficiency.

  • PDF