• Title/Summary/Keyword: 용존무기질소

Search Result 139, Processing Time 0.028 seconds

A Study on the Influence of Water Quality on the Phosphorus Fraction Properties from Reservoir Sediments (저수지 퇴적물로부터 인의 존재형태가 수질에 미치는 영향에 대한 연구)

  • Lee, Jin-Kyung;Ahn, Tae-Woong;Oh, Jong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.840-850
    • /
    • 2010
  • The present study was attempted to find the effects of structural properties of phosphorus on the water quality of Gyehwa reservoir in Saemangeum. Relationship of phosphorus fractions between water and sediment properties was closely examined, and a few types of phosphorus were found from the sample sediment as : Saloid-P, Al-P, Fe-P, Ca-P, Red-P and Occd-P. Saloid-P (1.4%), Al-P (0.5%), Fe-P (39.8%), Ca-P (56.6%), Red-P (0.4%), Occd-P (1.3%) were extracted in a mass basis from the sediment of Gyehwa reservoir. Approximately more than 97% of phosphorus were calcium related phosphorus (Ca-P, 56%) and iron bound phosphorus (Fe-P, 39.8%). The Fe-P closely relates with water quality of T-N (r=0.761, p<0.05), $NO_3$-N (r=0.754, p<0.05), $NH_4$-N (r=0.728, p<0.05), T-P (r=0.774, p<0.05) and $PO_4$-P (r=0.767, p<0.05) while the Ca-P did not show any consistent dependency on the water quality. On the other hand, the correlation of Ca-P with $P_2O_5$ was high with r=0.783 (p<0.05) in the sediment. The Fe-P was affected significantly on the Ignition Loss (r=0.569, p<0.05), T-N (r=0.715, p<0.05) and T-P (r=0.983, p<0.01). In the research of correlation between phosphorus fraction and heavy metals in the sediment, Ca-P did not show any specific relationships with heavy metals. The Fe-P showed a significant correlation with As (r=0.817, p<0.01), Cu (r=0.793, p<0.05), Cd (r=0.786, p<0.05), Zn (r=0.738, p<0.05), so that it can be stated that the presence of Fe-P may implicate the volume of various metallic elements.

Rearing Density of a Flounder, Paralichthys olivaceus Juveniles in a Closed Recirculating Sea Water System - Possibility of High-density Rearing - (폐쇄순환여과시스템에서의 넙치, Paralichthys olivaceus 치어의 사육밀도 - 고밀도사육의 가능성 -)

  • CHANG Young Jin;YOO Sung Kyoo
    • Journal of Aquaculture
    • /
    • v.1 no.1
    • /
    • pp.13-24
    • /
    • 1988
  • In order to investigate a reasonable rearing density and the possibility of high-density rearing, flounder, Paralichthys olivaceus, juveniles of 2.53$\pm$0.24 cm in total length and 1.12$\pm$0.12 cm in body height were used in this study. The initial rearing density of them was 10 (D10), 20 (D20), 30 (D30) and 40 (D40) individuals per 137.75 $cm^2$ of bottom area, respectively. Ranges of water temperature and specific gravity during the rearing period of 65 days were $21.0\~27.0^{\circ}C$ and 1.024$\~$1.026, respectively, showing relatively higher values than that of natural sea water. Dissolved oxygen during the rearing period was 5.4$\~$7.5 ml/$\iota$ and inorganic nitrate was 0.07$\~$0.48 ppm in $NH_4^+-N$, 0.006$\~$0.33 ppm in $NO_2^{-}-N$ and 3.89$\~$34.06 ppm in $NO_3^{-}-N$. Growth in total length and body height of the juveniles in four rearing density at the end of the experiment was 8.17$\pm$0.80 em and 4.16$\pm$0.39 em, the highest in D20 and 7.72$\pm$0.40 cm and 3.94$\pm$0.21 cm, the lowest in D10. Significant differences, however, were not recognized between the slope values of growth regressions in four rearing density. Slope values of the relative growth between total length and body height of the juveniles in four rearing density were 0.5346, the highest in D10 and 0.5165, the lowest in D30, but there were no significant differences in those values. Survival rate of juveniles at the end of the experiment was $90\%$ in D10, D20 and D30, but that of D40 was $75\%$. The relationship between total length X body height (X) and body surface area of ocular side (Y) to calculate the rate of Y to bottom area in rearing tank (covering rate) as an indicator of rearing density was expressed by a linear regression, Y=0.5994X+0.1840. Covering rate in four rearing density at the end of the experiment was ranged 1.2$\~$4.1 times. Judging from the covering rate above 4 times, it seems to be possible rearing the flounder juveniles in high-density.

  • PDF

Biogeochemical Fluxes Through the Cheju Strait (제주해협을 통과하는 화학물질 플럭스)

  • Chung, Chang-Soo;Hong, Gi-Hoon;Kim, Suk-Hyun;Park, Jun-Kun;Kim, Yong-Il;Moon, Duk-Soo;Chang, Kyung-Il;Nam, Su-Yong;Park, Yong-Chul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.208-215
    • /
    • 2000
  • The estimated total material transports through the Cheju Strait using all data which investigated in 1997 and 1999 are as follows; A large amount of suspended sediments and dissovted inorganic nutrients are carried tothe South Sea through the Cheju Strait by a persistent eastward flow (Cheju Current) from the Y311ow Sea andthe East China Sea. The annual material Oanspous by the Cheju Current are as follows; 22.9${\times}$10$^6$ ton yr$^{-1}$(SS), 0.52${\times}$10$^{10}$ mol yr$^{-1}$ (NH$_4\;^+$), 6.05${\times}$10$^{10}$ mol yr$^{-1}$ (NO$_3\;^-$), 0.36${\times}$10$^{10}$ mol yr$^{-1}$ (PO$_4\;^{3-}$), 10.27${\times}$10$^{10}$ mol yr$^{-1}$ (Si(OH)$_4$). The annual suspended sediment flux per water transport in the Cheju Strait (44.48${\times}$10$^6$ ton yr$^{-1}$ Sv$^{-1}$) is about 1.7 larger than that in the Korean Strait (26.08${\times}$10$^6$ ton yr$^{-1}$ Sv$^{-1}$). The annual nitrate flux per water transport (11.60${\times}$10$^{10}$ mol yr$^{-1}$ Sv$^{-1}$) is about 1.2 larger than that in the Korean Strait (9.72${\times}$10$^{10}$ mol yr$^{-1}$ Sv$^{-1}$) and 2/3 of that by Kuroshio in the East China Sea (18.55${\times}$10$^{10}$ ton yr$^{-1}$ Sv$^{-1}$). It suggests that chemical rich Cheju Current will play a significant role in the biogeochemical processes in the South Sea where the huge land-based waste are introduced.

  • PDF

Effects of Environmental Factors on the Bacterial Community in Eutrophic Masan Reservoir (이화학적 수질인자가 부영양화된 마산저수지의 세균분포에 미치는 영향)

  • 남귀숙;손형식;차미선;조순자;이광식;이상준
    • Korean Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.95-101
    • /
    • 2003
  • The total bacterial numbers, Eubacterial community structures and environmental factors which affect bacterial community were estimated monthly using DAPI and fluorescent in situ hybridization monthly, from June to November 2000 to evaluate the correlation between the bacterial community and environmental factors in eutrophic agricultural Masan reservoir in Asan. Average water temperatures varied from 12.3 to $27.5^{\circ}C$, pH 7.5 to 9.0, DO 7. I~12.8 mg/L, COD 6.4~13.0 mg/L, chlorophyll a 30.5~99.0 mg/㎥, SS 7.S~25.7 mg/L, TN 1.748~3.543 mg/L., and TP 0.104~0.581 mg/L, respectively. Total bacterial numbers showed high ranges from 0.4 to 9.6$\times$ $10^{6}$ cells/ml, and these indicated the mesotrophic or eutrophic state. The ratio of Eubacteria to total bacteria was 67.6-88.0%, which was higher than that in other reservoir. The relationships of total bacteria and Eubacteria community were more significant with organic nitrogen (Org-N), and organic phosphorus (Org-P) than with water temperature. Proteobacteria groups showed strongly significant relationships with Org-P and Org-N and significant relationships with water temperature, conductivity, COD, and inorganic nitrogen. C-F group was the most significant with Org-N, and HGC group with water temperature. However, relationships of Chl-a, pH, DO and SS showed no significance with any bacterial community. These results were different from other studies, because of the specific characteristics of Masan reservoir such as old, shallow and eutrophic states. The seasonal variation of bacterial community in Masan reservoir does not seem to depend on phytoplankton dynamics but on storm event and organic materials from watershed and the sediment of reservoir.

Long-term Variation of Water Quality in Lake Andong (안동호 수질의 장기적인 변화)

  • Kwon, Sang-Yong;Kim, Bom-Chul;Park, Ju-Hyun;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.260-266
    • /
    • 2000
  • Water quality parameters were surveyed in Lake Andong. Turbidity, temperature, secchi disc transparency (SD), phosphorus, nitrogen and chlorophyll a concentration were measured at dam site from July 1993 to December 1998. Minimum transparency in summer was only about 2 meters in 1993 and 1994, but it decreased to about 1 meter in 1997 and 1988. Total phosphorus concentration of the epilimnion increased slightly from $11{\sim}30\;mgP/m^3$ in 1993 to $18{\sim}42\;mgP/m^3$ in 1998. Total nitrogen concentration of the epilimnion decreased slightly from $1.81{\sim}2.96\;mgN/L$ in 1993 to $1.48{\sim}2.57\;mgN/L^3$ in 1998. TN/TP weight ratio decreased from $82{\sim}281$ in 1993 to $21{\sim}143$ in 1998 due to the increase of phosphorus concentration and the decrease of nitrogen concentration. Dissolved inorganic phosphorus concentration and the decrease of nitrogen concentration. Dissolved inorganic phosphorus and nitrate nitrogen concen tration of the epilimnion were in the range of $0.9{\sim}5.3\;mgP/m^3$ and $1.36{\sim}1.68\;mgN/L$, respectively. Chlorophyll a concentration in summer was in the range of $11.0{\sim}19.1\;mg/m^3$ in 1994, 1996 and 1997, but it decreased to $2.3{\sim}6.5\;mg/m^3$ in 1998. Trophic state of Lake Andong can be classified as mesotrophic to eutrophic from TP, TN and chlorophyll a concentration.

  • PDF

Influence of the Asian Monsoon on Seasonal Fluctuations of Water Quality in a Mountainous Stream (산간 계류성 하천의 계절적 수질변동에 대한 몬순강우의 영향)

  • Shin, In-Chul;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.54-62
    • /
    • 2005
  • The present study was to determine how seasonal rainfall intensity influences nutrient dynamics, ionic contents, oxygen demands, and suspended solids in a lotic ecosystem. Largest seasonal variabilities in most parameters occurred during the two months of July to August and these were closely associated with large spate of rainfall. Dissolved oxygen (DO) had an inverse function of water temperature (r = = = - 0.986, p<0.001). Minimum pH values of<6.5 were observed in the late August when rainfall peaked in the study site, indicating an ionic dilution of stream water by precipitation. Electrical conductivity (EC) was greater during summer than any other seasons, so the overall conductivity values had direct correlation (r = 0.527, p<0.01) with precipitation. Ionic dilution, however, was evident 4 ${\sim}$ 5 days later in short or 1 ${\sim}$ 2 weeks in long after the intense rain, indicating a time-lag phenomenon of conductivity. Daily COD values varied from 0.8 mg $L^{-1}$ to 7.9 mg $L^{-1}$ and their seasonal pattern was similar (r = 0.548, p<0.001) to that of BOD. Total nitrogen (TN) varied little compared to total phosphorus (TP) and was minimum in the base flow of March. In contrast, major input of TP occurred during the period of summer monsoon and this pattern was similar to suspended solids, implying that TP is closely associated (r = 0.890, p<0.01) with suspended inorganic solids. Mass ratios of TN : TP were determined by TP (r= -0.509, p<0.01) rather than TN (r= -0.209, p<0.01). The N : P ratios indicated that phosphorus was a potential primary limiting nutrient for the stream productivity. Overall data suggest that rainfall intensity was considered as a primary key component regulating water chemistry in the stream and maximum variation in water quality was attributed to the largest runoff spate during the summer monsoon.

The Hydrochemical and Stable Isotope Characteristics of Shallow Groundwater Near the Gwangju Stream (광주천 인근 천부 지하수의 수리화학 및 안정동위원소 특성)

  • Yoon, Wook;Ji, Se-Jung;So, Chil-Sub
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.441-455
    • /
    • 2003
  • The most common water types are found to be Ca-$HCO_3$, Ca-Na-$HCO_3$ and Ca-Na-$HCO_3$-Cl in Gwangju groundwater. Groundwater near the Gwangju stream are characterized Ca-Cl water type, with over 50 mg/L of C1- and 400 ${\mu}$S/cm of EC. The systematic variation of $Cl^-$, $HCO_3^-$,- EC and ${\gamma}^{18}O$ values in groundwater with distance away from drainages is caused by streamwater infiltration. Stable isotope data indicate that ${\gamma}$D and ${\gamma}^{18}O$ values of groundwaters near drainages were enriched by evaporation effect, showing a equation of ${\gamma}$D=7. 1${\times}{\gamma}^{18}O$-1. ${\gamma}^{18}O$ values over -6${\textperthansand}$ are anomalous in the unconfined groundwater zones, which are influenced by the local surface water enriched in $^{18}O$ composition. Groundwater in highland shows remarkably light ${\gamma}^{18}O$ values below -8$\textperthousand$. The infiltration of streamwater is dominant in unconfined alluvium aquifer near drainages. ${\gamma}^{13}$CDIC values (-17.6∼-15.2$\textperthousand$) of groundwaters near drainages revealed that dissolved inorganic carbon (DIC) is predominantly originated from natural soil-derived $CO_2$. ${\gamma}^{15}N$ and ${\gamma}^{18}O$ values of nitrate are 0∼17.0${\textperthansand}$ and 6.6∼17.4${\textperthansand}$, respectively. Relationship between ${\gamma}^{15}N$ and ${\gamma}^{18}O$ shows a systematic isotopic fractionation caused by denitrification of 40∼60%, suggesting that the major source of groundwater nitrate originated from nitrate of soils, and mixing nitrate of soil and sewage or manure.

Semiweekly variation of Spring Phytoplankton Community in Relation to the Freshwater Discharges from Keum River Estuarine Weir, Korea (금강하구언 담수방류와 춘계 식물플랑크톤 군집의 단주기 변동)

  • Yih, Won-Ho;Myung, Geum-Og;Yoo, Yeong-Du;Kim, Young-Geel;Jeong, Hae-Jm
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.3
    • /
    • pp.154-163
    • /
    • 2005
  • Irregular discharges of freshwater through the water gates of the Keum River Estuarine Weir, Korea, whose construction had been completed in 1998 with its water gates being operated as late as August 1994, drastically modified the estuarine environment. Sharp decrease of salinity along with the altered concentrations of inorganic nutrients are accompanied with the irregular discharges of freshwater into the estuary under the influence of regular semi-diurnal tidal effect. Field sampling was carried out on the time of high tide at 2 fixed stations(St.1 near the Estuarine Weir and St.2 off Kunsan Ferry Station) every other day for 4 months from mid-February 2004 to investigate into the semi-weekly variation of spring phytoplankton community in relation to the freshwater discharges from Keum River Estuarine Weir. CV(coefficient of variation) of salinity measurements was roughly 2 times greater in St.1 than that in St.2, reflecting extreme salinity variation in St.1 Among inorganic nutrients, concentrations of N-nutrients($NO_3^-,\;NO_2^-$ and $NH_4^+$) were clearly higher in St.1, to imply the more drastic changes of the nutrient concentrations in St.1. than St.2 following the freshwater discharges. As a component of phytoplankton community, diatoms were among the top dominants in terms of species richness as well as biomass. Solitary centric diatom, Cyclotella meneghiniana, and chain-forming centric diatom, Skeletonema costatum, dominated over the phytoplankton community in order for S-6 weeks each (Succession Interval I and II), and the latter succeeded to the former from the time of <$10^{\circ}C$ of water temperature. Cyanobacterial species, Aphanizomenon Posaquae and Phormidium sp., which might be transported into the estuary along with the discharged freshwater, occupied high portion of total biomass during Succession Interval III(mid-April to late-May). During this period, freshwater species exclusively dominated over the phytoplankton community except the low concentrations of the co-occurring 2 estuarine diatoms, Cyclotella meneghiniana and Skeletonema costatum. During the 4th Succession Interval when the water temperature was over $18^{\circ}C$, the diatom, Guinardia delicatula, was predominant for a week with the highest dominance of $75\%$ in discrete samples. To summarize, during all the Succession Intervals other than Succession Interval III characterized by the extreme variation of salinity under cooler water temperature than $18^{\circ}C$, the diatoms were the most important dominants for species succession in spring. If the scale and frequency of the freshwater discharge could have been adjusted properly even during the Succession Interval III, the dominant species would quite possibly be replaced by other estuarine diatom species rather than the two freshwater cyanobacteria, Aphanizomenon flosaquae and Phormidium sp.. The scheme of field sampling every other day for the present study was concluded to be the minimal requirement in order to adequately explore the phytoplankton succession in such estuarine environment as in Keum River Estuary: which is stressed by the unpredictable and unavoidable discharges of freshwater under the regular semi-diurnal tide.

Study of East Asia Climate Change for the Last Glacial Maximum Using Numerical Model (수치모델을 이용한 Last Glacial Maximum의 동아시아 기후변화 연구)

  • Kim, Seong-Joong;Park, Yoo-Min;Lee, Bang-Yong;Choi, Tae-Jin;Yoon, Young-Jun;Suk, Bong-Chool
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.1 s.26
    • /
    • pp.51-66
    • /
    • 2006
  • The climate of the last glacial maximum (LGM) in northeast Asia is simulated with an atmospheric general circulation model of NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. Modern climate is simulated by a prescribed sea surface temperature and sea ice provided from NCAR, and contemporary atmospheric CO2, topography, and orbital parameters, while LGM simulation was forced with the reconstructed CLIMAP sea surface temperatures, sea ice distribution, ice sheet topography, reduced $CO_2$, and orbital parameters. Under LGM conditions, surface temperature is markedly reduced in winter by more than $18^{\circ}C$ in the Korean west sea and continental margin of the Korean east sea, where the ocean exposed to land in the LGM, whereas in these areas surface temperature is warmer than present in summer by up to $2^{\circ}C$. This is due to the difference in heat capacity between ocean and land. Overall, in the LGM surface is cooled by $4{\sim}6^{\circ}C$ in northeast Asia land and by $7.1^{\circ}C$ in the entire area. An analysis of surface heat fluxes show that the surface cooling is due to the increase in outgoing longwave radiation associated with the reduced $CO_2$ concentration. The reduction in surface temperature leads to a weakening of the hydrological cycle. In winter, precipitation decreases largely in the southeastern part of Asia by about $1{\sim}4\;mm/day$, while in summer a larger reduction is found over China. Overall, annual-mean precipitation decreases by about 50% in the LGM. In northeast Asia, evaporation is also overall reduced in the LGM, but the reduction of precipitation is larger, eventually leading to a drier climate. The drier LGM climate simulated in this study is consistent with proxy evidence compiled in other areas. Overall, the high-resolution model captures the climate features reasonably well under global domain.

  • PDF