• Title/Summary/Keyword: 용접 품질 감시시스템

Search Result 5, Processing Time 0.02 seconds

Development of a Simulation Tool and a Monitoring System for Laser Welding Quality Inspection (레이저 용접품질 검사기법 개발을 위한 시뮬레이션 툴과 이를 이용한 감시 시스템의 개발)

  • 이명수;권장우;길경석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.985-993
    • /
    • 2001
  • Neural networks are shown to be effective in being able to distinguish incomplete penetration-like weld defects by directly analyzing the plasma which is generated on each impingement of the laser on the materials. The performance is similar to that of existing methods based on extracted feature parameters. In each case around 93% of the defects in a database derived from 100 artificially produced defects of known types can be placed into one of two classes: incomplete penetration and bubbling. The present method based on classification using plasma is faster, and the speed is sufficient to allow on-line classification during data collection.

  • PDF

Quality assurance algorithm using fuzzy reasoning for resistance spot weldings (퍼지추론을 이용한 저항 점용접부위의 품질평가 알고리듬)

  • Kim, Joo-Seok;Lee, Jae-Ik;Lee, Sang-ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.644-653
    • /
    • 1998
  • In resistance spot weld, the assurance of weld quality has been a long-standing problem. Since the weld nuggets if resustance spot welding form between the workpieces, visual detection of defects in usually impossible. Welding quality of resistance spot welding can be verified by non destructive and destructive inspections such as X-Ray inspection and testing of weld strength. But these tests, in addition to being time-consuming and costly, can entail risks due to sampling basis. The purpose of this study is the development of the monitoring system based on fuzzy inference, aimed at diagonosis of quality in resistance spot welding. The fuzzy inference system consists of fuzzy input variables, fuzzy membership functions and fuzzy rules. For inferring the welding quality(strength), the experimental data of the spot welding were acquired in various welding conditions with the monitoring system designed. Some fuzzy input variables-maximum, slop and difference values of electrode movement signals-were extracted from the experimental data. It was confirmed that the fuzzy inference values of strength have a .${\pm}$5% error in comparison with actual values for the selected welding conditions(9-10.5KA, 10-14 cycle, 250-300 $kg_f$). This monitoring system can be useful in improving the quality assurance and reliability of the resistance spot welding process.

Weld Quality Monitoring System Development Applying A design Optimization Approach Collaborating QFD and Risk Management Methods (품질 기능 전개법과 위험 부담 관리법을 조합한 설계 최적화 기법의 용접 품질 감시 시스템 개발 응용)

  • Son, Joong-Soo;Park, Young-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.207-216
    • /
    • 2000
  • This paper introduces an effective system design method to develop a customer oriented product using a design optimization process and to select a set of critical design paramenters,. The process results in the development of a successful product satisfying customer needs and reducing development risk. The proposed scheme adopted a five step QFD(Quality Function Deployment) in order to extract design parameters from customer needs and evaluated their priority using risk factors for extracted design parameters. In this process we determine critical design parameters and allocate them to subsystem designers. Subsequently design engineers develop and test the product based on these parameters. These design parameters capture the characteristics of customer needs in terms of performance cost and schedule in the process of QFD, The subsequent risk management task ensures the minimum risk approach in the presence of design parameter uncertainty. An application of this approach was demonstrated in the development of weld quality monitoring system. Dominant design parameters affect linearity characteristics of weld defect feature vectors. Therefore it simplifies the algorithm for adopting pattern classification of feature vectors and improves the accuracy of recognition rate of weld defect and the real time response of the defect detection in the performance. Additionally the development cost decreases by using DSP board for low speed because of reducing CPU's load adopting algorithm in classifying weld defects. It also reduces the cost by using the single sensor to measure weld defects. Furthermore the synergy effect derived from the critical design parameters improves the detection rate of weld defects by 15% when compared with the implementation using the non-critical design parameters. It also result in 30% saving in development cost./ The overall results are close to 95% customer level showing the effectiveness of the proposed development approach.

  • PDF