• Title/Summary/Keyword: 용접 잔류응력해석

Search Result 193, Processing Time 0.019 seconds

Residual Stress Analysis of the Overlay Weld on the Dissimilar Metal Butt Weld (이종재이종재료 Butt 용접에 대한 Overlay 용접의 잔류응력해석)

  • Kim, Kang-Soo;Lee, Ho-Jin;Lee, Bong-Sang;Jung, In-Chul;Byeon, Jin-Gwi;Park, Kwang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.534-537
    • /
    • 2008
  • In recent years, the dissimilar metal, Alloy 82/182 welds used to connect stainless steel piping and low alloy steel or carbon steel components in nuclear reactor piping system have experienced cracking due to primary water stress corrosion(PWSCC). It is well known that one reason of the cracking is the residual stress by the weld. But, it is difficult to estimate exactly weld residual stress due to many parameters of welding. In this paper, the analysis of 3 FEM models made by ABAQUS Code is performed to estimate exactly the weld residual stress on the dissimilar metal weld. 3 FEM models are Butt model, Repair model and Overlay model and are the plane.strain 2D model. The thermal analysis and the stress analysis are performed on each model and the residual stresses on each model were calculated and compared respectively. Also, the specimen of Butt model was made and the residual stresses were measured by X-Ray method and Hole Drilling Technique. These results were compared with the FEM result of Butt model.

  • PDF

Health Monitoring of Weldment By Post-processing Approach Using Finite Element Analysis (유한요소해석 후처리 기법을 이용한 용접부의 건전성 평가)

  • 이제명;백점기;강성원;김명현
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.32-36
    • /
    • 2002
  • In this paper, a numerical methodology for health monitoring of weldment was proposed using finite element method coupled with continuum damage mechanics. The welding-induced residual stress distribution of T-joint weldment was calculated using a commercial finite element package SYSWELD+. The distribution of latent damage was evaluated from the stress and strain components taken as the output of a finite element calculation. Numerical examples were given to demonstrate the usefulness of this so-called "post-processing approach" in the case of welding-induced damage assessment.

A Study on the Analysis of Residual Stress of STS 304 Weldment Using Hole Drilling Method (구멍뚫기법(HDM)에 의한 STS 304 용접부의 잔류응력 해석에 관한 연구)

  • 고준빈;최원두;이영호
    • Journal of Welding and Joining
    • /
    • v.19 no.6
    • /
    • pp.664-670
    • /
    • 2001
  • The HDM(Hole Drilling Method) is a relatively simple and accurate methods in measuring residual stress of weldment. Various method of evaluating residual stress are studied in welding field. The method of cutting holes on the plate much affects the accuracy of result. Especially for the hard material like stainless which is difficult to cut preciously is difficult to measure residual stress of weldment. Because heat conduction of strainless steel is lower than other general steel, the magnitude of residual stress might be different as to changing of welding conditions. Therefore, the distribution of residual stress on the STS304 steel after welding using HDM is evaluated in this paper.

  • PDF

Analysis of Residual Stresses for the Multipass Welds of 316L Stainless Steel Pipe by Neutron Diffraction Method (중성자 회절법에 의한 316L 스테인리스강 배관 다층용접부의 잔류응력 해석)

  • 김석훈;이재한
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.64-70
    • /
    • 2003
  • Multipass welds of the 316L stainless steel have been widely employed in the pipes of Liquid Metal Reactor. Owing to localized heating and subsequent rapid cooling by the welding process, the residual stress arises in the weld of the pipe. In this study, the residual stresses in the 316L stainless steel pipe welds were calculated by the finite element method using ANSYS code. Also, the residual stresses both on the surface and in the interior of the thickness were measured by HRPD(High Resolution Powder Diffractometer) instrumented in HANARO Reactor. The experimental data and the calculated results were compared and the characteristics of the distribution of the residual stress discussed.

Analysis on the Fatigue Crack Propagation of Weld Toe Crack through Residual Stress Field (잔류응력장을 전파하는 용접 토우부 균열의 전파해석)

  • 김유일;전유철;강중규;한종만;한민구
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.33-40
    • /
    • 2000
  • Fatigue crack propagation life of weld toe crack through residual stress field was estimated with Elber's crack concept. Propagation of weld toe crack is heavily influenced by residual stress caused by welding process, so it is essential to take into account the effect of residual stress on the propagation life of weld toe crack. Fatigue crack at transverse and longitudinal weld toe was studied respectively, which represent typical weld joint in ship structure. Numerical and experimental studies are performed for both cases. Residual stress near weldment was estimated through nonlinear thermo-elasto-plastic finite element method, and residual stress intensity factor with Glinka's weight function method. Effective stress intensity factor was calculated with Newman-Forman-de Koning-Henriksen equation which is based on Dugdale strip yield model in estimating crack closure level U at different stress ratio. Calculated crack propagation life coincided well with experimental results.

  • PDF

Effect of Weld Residual Stress on Fatigue Analysis of Nozzle (노즐의 피로해석에 미치는 용접잔류응력의 영향)

  • Kim, Sang-Chul;Kim, Man-Won
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.71-78
    • /
    • 2014
  • Although the fatigue design curve of ASME Code has enough margin with respect to alternating stress and cycles, the welding residual stress(WRS) should be included in fatigue analysis. In this paper, WRS distribution in a nozzle with dissimilar metal weldment was obtained by finite element analysis and was added in fatigue analysis. The fatigue analysis was performed by following the ASME Code including thermal and stress analysis applying with postulated 30 transient conditions. The calculated results of a cumulative fatigue usage factors(CUF) were compared for the case of the models with or without WRS effects. The results showed that the CUF at weldment and heat affected zone was affected by the WRS.

A Study on the Numerical Analysis of Welding Heat Distribution of Preflex Beam (유한요소법에 의한 PREFLEX BEAM의 용접열분포 특성에 관한 연구)

  • 방한서;주성민;김하식
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.52-57
    • /
    • 2004
  • Preflex beam is a method of construction designed to hold the pre-compressive stresses over the concrete pier by the preflexion load. During the fabrication of the girder, welding causes residual stresses. The welding residual stresses must be relieved in order to generate the accurate compressive pre-stresses. In this study, to determine the thermal distribution characteristics on the girder by welding, both three-dimensional finite element analysis and two-dimensional finite element analysis, in a quasi-steady state, is carried out. After comparing each result between the three-dimensional analysis and the two-dimensional analysis, finite element analysis is carried out against the actual girder, and the welding thermal distribution characteristic over the preflex beam is analyzed. It is possible to provide the input data for the analysis of the welding residual stresses.

An Analysis of the Redistribution of Residual Stress Due to Crack Propagation Initially Through Residual Tensile Stress Field by Finite Element Method (인장잔류응력장으로부터 피로균열이 전파하는 경우 잔류응력의 재분포거동에 대한 해석적 검토)

  • 김응준;박응준;유승현
    • Journal of Welding and Joining
    • /
    • v.21 no.7
    • /
    • pp.71-77
    • /
    • 2003
  • In this study, an investigation based on the superposition principle to predict residual stress redistribution caused by crack propagation itself initially through residual tensile stress field was performed by finite element method. The tendency in residual stress redistribution caused by crack propagation recognized both from the analytical results and experimental result was the residual stress concentration consecutively occurred in the vicinity of crack tip even the situation that the crack propagated to the region initially residual compressive stress existed. The software for the analysis is ABAQUS, which is a general purpose finite element package. The analytical method that attempt to take the plastic deformation at the crack tip due to tensile residual stress into the consideration of residual stress redistribution caused by crack propagation was proposed. The plastic zone size at the tip of fatigue crack and redistributed residual stresses were calculated by finite element method on the bases of the concept of Dugdale model. Comparing these analytical results with experimental results, it is verified that the residual stress redistribution caused by crack propagation can be predicted by finite element method with the proposed analytical method.

A Study on the Analysis of Residual Stress in Weldment by Considering the Phase Transformation of Carbon Steel (상변태를 고려한 탄소강 용접부의 잔류응력 해석에 관한 연구)

  • Jo, Si-Hun;Kim, Jae-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.390-398
    • /
    • 2001
  • Welding process generates distortion and residual stress in the weldment due to rapid heating and cooling. Welding distortion and residual stress in the welded structure result in many troubles such as dimensional inaccuracies in assembling and safety problem during service. The accurate prediction of welding residual stress is thus very important to improve the quality of weldment and find the way to reduce itself. This paper suggests new analysis method to predict welding residual stress by considering solid phase transformation during welding process. Using the method, analysis is performed for medium and low carbon steel. The analysis result for medium carbon steel reveals that case considering phase transformation has compressive residual stress in contrast with the case neglecting phase transformation because of martensite formation. However, for the case of low carbon steel, residual stress shows little difference between the case considering phase transformation and the other case, because it has small transformation strain and recovers rapidly stress after phase transformation.

A Study on the Mechanical Behavior of Resistance Spot Welding by Finite Element Method (유한요소법에 의한 저항 점용접부의 역학적 특성에 관한 연구)

  • 방한서;주성민;방희선;차용훈;최병기
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.77-82
    • /
    • 1999
  • Resistance spot welding process is completed in very short time and there are many factors affecting on the generation of heat. It is difficult to control these experimental factors and monitor distribution of the temperature and stresses in the experimental analysis case. and too much time and expense are required for the experimental trials to fine proper welding condition. So numerical analyses have been attempted steadily, but most numerical analyses on the resistance spot welding are mainly focused on thermal behavior. Therefore, in this paper, the numerical analysis of mechanical behavior as well as heat conduction is carried out for the spot welding process. For this numerical analysis, axial symmetric computer program for the spot welding analysis by F.E.M. has been developed considering heat conduction and thermal elastic-plastic theory. Material properties depending on temperature such as density, heat conductivity, heat expansion coefficient, specific heat, yield stress, elastic modulus, and specific resistance are considered. Using the results of temperature distribution obtained from heat conduction analysis, the thermal elastic-plastic analysis is carried out to clarify mechanical behavior of spot welded specimen. In order to evaluate the effect of residual stresses, numerical analyses are carried out under tension-shear load in two cases respectively; one with residual stress, the other without residual stresses.

  • PDF