• Title/Summary/Keyword: 용접형

Search Result 554, Processing Time 0.027 seconds

Thermal Stress at the Junction of Skirt to Head in Hot Pressure Vessel (고온 수직형 압력용기 Skirt 부의 열응력에 관한 연구)

  • 한명수;한종만;조용관
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.111-121
    • /
    • 1998
  • It is well recognized that a excessive temperature gradient from the junction of head to skirt in axial direction in a hot pressure vessel can cause unpredicted high thermal stress at the junction and/or in axial direction of a skirt. this thermal stress resulting from axial thermal gradient may be a major cause of unsoundness of structural integrity. In case of cyclic operation of hot pressure vessels, the thermal stress becomes one of the primary design consideration because of the possibility of fracture as a result of cyclic thermal fatigue and progressively incremental plastic deformation. To perform thermal stress analysis of the junction and cylindrical skirt of a vessel, or, at least, to inspect quantitatively the magnitude and effect of thermal stress, the temperature profile of the vessel and skirt must be known. This paper demonstrated the temperature distribution and thermal stress analysis for the junction of skirt to head using F.E. analysis. Effect of air pocket in crotch space was quantitatively investigated to minimize the temperature gradient causing the thermal stress in axial direction. Effect of the skirt height on thermal stresses was also studied. Analysis results were compared with theoretical formulas to verify th applicability to the strength calculation in design field.

  • PDF

Process Optimization for Improving Resistance Welding Quality of Cylindrical Secondary Battery (원통형 이차전지의 저항용접 품질 향상을 위한 공정 최적화)

  • Chung, Ji Sun;Park, Soon Seo;Kim, Jee Ho;Kwon, Hyuck Moo;Hong, Sung Hoon;Lee, Min Koo
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.1
    • /
    • pp.69-86
    • /
    • 2020
  • Purpose: This study aims to determine the optimal conditions for the spot welding process that mechanically connects the case of a cylindrical secondary battery and the negative tab. Methods: We use 33 factorial design to derive the optimal conditions for the spot welding process. The pulling strength, the cross-sectional area of nugget, and the shock test life are selected as response variables, which can represent the resistance welding quality. The input variables are selected as the welding time, welding voltage, and pressure, which are the controllable factors in the spot welding process. Results: The main effects of welding time and welding voltage and the interaction effect of welding time and welding voltage are significant. Conclusion: The optimal conditions for the spot welding process to mechanically join the negative electrode tab of the cylindrical secondary battery and the battery case are developed. The result shows that the pulling strength is increased by 44% compared to before improvement under optimal conditions.

Welding Deformation and Its Correction of Cylindrical Moon Pool Structure (원통형 문풀 구조물의 탑재 시 변형과 수정)

  • Seong, Woo-Jae;Chun, Kwang-San
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.389-395
    • /
    • 2019
  • Turret mooring type Floating Production Storage and Offloading (FPSO) is designed to rotate the hull around a turret system. The system is mounted inside a cylindrical moon-pool structure of the ship hull structure. The upper part of the moon-pool structure called Bogie Support Structure (BSS) is supported on ring type rail structure (bogie), so high roundness is required at the top of the structure. In this study, the deformation measured during BSS installation was compared with the predicted values through the thermal elasto-plastic analysis, and the causes of deformation were analyzed. Deformation behavior of cylindrical structure with a very large diameter compared to the thickness was investigated. In addition, a proper welding sequence and correction method for the deformed structure were proposed. This study can be an example of the solution to the tolerance problem of large cylindrical structures.

Effect of Aging Treatment on Pitting Corrosion of Super Duplex Stainless Steel Weld Metal (슈퍼듀플렉스강 용접금속의 공식에 미치는 시효처리의 영향)

  • Lee, Jae-Hyoung;Seo, Gi-Jeong;Jung, Byong-Ho;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.70-76
    • /
    • 2014
  • A specimen of weld metal was prepared by GTA welding with weld wire of super duplex stainless steel. Aging treatment was conducted for the sample at the temperature range of 700 to $900^{\circ}C$ for 5 to 300 minutes. The effect of aging temperature and time to pitting corrosion of weld metal has been investigated and the results were derived as follows. The volume fraction of ${\sigma}$ phase tends to increase with an increase of aging temperature and time. Pitting potential Ep representing pitting corrosion was found to tend to decrease with an increase of aging time at 700 to $900^{\circ}C$. And most of the pits formed near the ${\sigma}$-phase in the ferrite and seemed to propagated to austenite.

용융물 냉각 및 간극 형성 실험(LAVA)연구

  • 강경호;김종환;조영로;김상백;김희동
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.669-674
    • /
    • 1997
  • LAVA(Lower-plenum Arrested Vessel Attack) 실험은 중대사고시 고온의 노심 용융물이 냉각수가 존재하는 원자로 용기 하부 반구내로 재배치되는 경우 노심 용융물과 하부반구의 열적 거동 모사와 노심용융물과 하부 반구 사이의 구조 분석 및 고화 후의 용융물형상에 대한 관측을 통하여 노심용융물의 자연 냉각 현상을 규명하고자 하는 실험 연구이다. 원자로 용기 하부 반구를 1/8로 선형 축소한 반구형 반응 용기 내부로 $Al_2$O$_3$/Fe Thermite 용융물을 주입하여 용융물과 하부 반구 사이의 구조 및 하부 반구의 열적 거동을 분석하는 실험을 2회 수행하였다. 각각 20, 40kg의 $Al_2$O$_3$/Fe Thermite 용융물을 주입시 킨 LAVA_PRE, LAVA-1 실험 결과 용융물 주입에 따른 하부 반구의 파손은 발생하지 않았으며, 유사한 실험조건에서 수행된 일본 ALPHA실험에 비해서는 하부 반구의 최대 온도가 500 K 이상 높게 측정되었고 냉각율 또한 현저히 낮게 나타났다. 이는 $Al_2$O$_3$/Fe Thermit 용융물중 과열상태의 Fe성분이 하부 반구와 용접되었기 때문으로 판단되며 보다 정확한 하부 반구의 열적거동을 모사하기 위하여 반구 시편에 대한 재료, 조직 검사를 수행하고 있다. 추후의 실험에서는 하부 반구 내외부의 압력 부하에 따른 반응 양상 및 Fe 용융물(금속용융물) 성분을 제거하고 순수한 $Al_2$O$_3$용융물(산화용융물) 만을 주입하여 용융물 성분에 따른 하부 반구의 열적거동을 분선 할 예정이다.

  • PDF

Trends of Sensor-based Intelligent Arc Welding Robot System (센서기반 지능형 아크 용접 로봇 시스템의 동향)

  • Joung, Ji Hoon;Shin, Hyeon-Ho;Song, Young Hoon;Kim, SooJong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1051-1056
    • /
    • 2014
  • In this paper, we introduce an intelligent robotic arc welding system which exploits sensors like as LVS (Laser Vision Sensor), Hall effect sensor, voltmeter and so on. The use of industrial robot is saturated because of its own limitation, and one of the major limitations is that industrial robot cannot recognize the environment. Lately, sensor-based environmental awareness research of the industrial robot is performed actively to overcome such limitation, and it can expand application field and improve productivity. We classify the sensor-based intelligent arc welding robot system by the goal and the sensing data. The goals can be categorized into detection of a welding start point, tracking of a welding line and correction of a torch deformation. The Sensing data can be categorized into welding data (i.e. current, voltage and short circuit detection) and displacement data (i.e. distance, position). This paper covers not only the explanation of the each category but also its advantage and limitation.

Motion Control of Mobile Robot with Arc Sensor for Lattice Type Welding (아크센서를 적용한 격자형 용접용 모빌 로봇의 제어)

  • Jeon, Yang-Bae;Han, Young-Dae;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.319-324
    • /
    • 2001
  • This paper presents the motion control of a mobile robot with arc sensor for lattice type welding. Its dynamic equation and motion control method for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven along a straight line or corner. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider controls. For the torch slider control, the proportional integral derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the comer with range of $90^{\circ}$ constrained to the welding speed. The experiment has been done to verify the effectiveness of the proposed controllers. These results are shown to fit well by the simulation results.

  • PDF

Electrochemical Corrosion Evaluation of Aluminum Alloy Weldment Prepared by GMAW Process (알루미늄 합금 GMAW 용접부의 전기화학적 방법에 의한 내식성 평가)

  • Yang, Ye-Jin;Park, Il-Cho;Lee, Jung-Hyung;Han, Min-Su;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.6
    • /
    • pp.498-503
    • /
    • 2017
  • The aim of the present study is to evaluate electrochemical corrosion characteristics of base metal and weldment of Al-Mg alloy in seawater solution. The specimen was 5mm thick 5083-H321 Al alloy plate which was butt-welded using gas metal arc welding (GMAW). To identify the types of inclusions in the weldment, the microstructural observation was performed along with Energy dispersive spectrometer (EDS) analysis. The anodic polarization experiments were performed to evaluate the corrosion characteristics. After the anodic polarization test, the corroded surface was observed by SEM(scanning electron microscope) and EDS. The result of the analysis revealed a large number of voids in the weldment, especially coarse grains and inclusions in the heat affected zone. The corrosion current density of the weldment was found to be approximately 13 times higher than that of the base metal, indicating lower corrosion resistance of the weldment due to the defects in the weldment and the heat affected zone.

Analysis and Optimization of the Cladding Parameters for Improving Deposition Efficiency in Cladding using a Low Power Pulsed Nd:YAG Laser (저출력 펄스형 Nd:YAG 레이저를 사용한 클래딩에서 클래딩 변수들이 용착효율에 미치는 영향 분석 및 최적화)

  • Lee, Hyoung-Keun
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.49-57
    • /
    • 2007
  • The optimization of the cladding parameters was studied to maximize the deposition efficiency in the laser cladding using a low power pulsed Nd:YAG laser. STS304 stainless steel plate and Co alloy powder were used as a substrate and powder for cladding, respectively. The six cladding parameters were selected through preliminary experiments and their effects on the deposition efficiency were analyzed statistically. Experiments were designed and carried out using the Taguchi experimental method using a L18 orthogonal array. It was found from the results of analysis of variance(ANOVA) that the powder feed position and powder feed angle had the most significant effects on the deposition efficiency, but the powder feed rate and laser focal position had nearly no effects. The deposition efficiency could be maximized at 0mm of the powder feed position and 50o of the powder feed angle in the experimental range. From this experimental analysis, a new laser cladding head with 20o of the powder feed angle was designed and manufactured. With a new laser cladding head, the highest deposition efficiency of 12.2% could be obtained.

The Effect of Aging Treatment on the High Temperature Fatigue Fracture Behavior of Friction Welded Domestic Heat Resisting Steels (SUH3-SUS 303) (마찰용접된 국산내열 강 (SUH3-SUS303 )의 시효열처리가 고온피로강도 및 파괴거동에 미치는 영향에 관한 연구)

  • Lee, Kyu-Yong;Oh, Sae-Kyoo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.93-103
    • /
    • 1981
  • It is well-known that nowadays heat resisting and anti-corrosive materials have been widely used as the components materials of gas turbines, nuclear power plants and engines etc. In the fields of machine production industry. And materials for engine components, like as the exhaust valve of internal combustion engine, have been required to operate under the high temperature range of $700^{\circ}C$-$800^{\circ}C$ and high pressured gas with repeated mechanical load for the high performance of engines. For these components, friction welding for bonding of dissimilar steels can be applied for in order to obtain process shortening, production cost reduction and excellent bonding quality. And age hardening recently has been noticed to the heat resisting materials for further strengthening of high temperature strength, especially high temperature fatigue strength. However, it is difficult to find out any report concerning the effects of age hardening for strengthening high temperature fatigue strength to the Friction welded heat resisting and anti-corrosive materials. In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of $700^{\circ}C$ high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10hr., 100hr. aging heat treated at $700^{\circ}C$ after solution treatment 1hr. at $1, 060^{\circ}C$ for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviors as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and micro-structural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8kg/mm super(2), upsetting pressure 22kg/mm super(2), the amount of total upset 7mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH 3, SUS 303, have the highest inclination gradient on S-N curve due to the high temperature fatigue testing for long time at $700^{\circ}C$. 3) The optimum aging time of friction welded SUH3-SUS 303, has been recognized near the 10hr. at $700^{\circ}C$ after the solution treatment of 1hr. at $1, 060^{\circ}C$. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10hr. aging, fatigue limits were increased by SUH 3 75.4%, SUS 303 28.5%, friction welded joints SUH 3-SUS 303 44.2% and 100hr. aging the rates were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base matal SUS303 of the friction welded joints SUH 3-SUS 303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS 303, SUH 3-303 is intergranular in any case, but SUH 3 is fractured by transgranular cracking.

  • PDF