• Title/Summary/Keyword: 용접전류

Search Result 202, Processing Time 0.017 seconds

Nano-scale Patterning on Diamond substrates using an FIB (FIB를 이용한 다이아몬드 기판 위의 나노급 미세 패턴의 형상 가공)

  • Song, Oh-Sung;Kim, Jong-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1047-1055
    • /
    • 2006
  • We patterned nano-width lines on a super hard bulk diamond substrate by varying the ion beam current and ion beam sources with a dual beam field ion beam (FIB). In addition, we successfully fabricated two-dimensional nano patterns and three-dimensional nano plate modules. We prepared nano lines on a diamond and a silicon substrate at the beam condition of 30 kV, 10 pA $\sim$ 5 nA with $Ga^+$ ion and $H_2O$ assisted ion sources. We measured each of the line-width, line-depth, etched line profiles, etch rate, and aspect ratio, and then compared them. We confirmed that nano patterning was possible on both a bulk diamond and a silicon substrate. The etch rate of $H_2O$ source can be enhanced about two times than that of Ga source. The width of patterns on a diamond was smaller than that on a silicon substrate at the same ion beam power The sub-100 nm patterns on a diamond were made under the charge neutralization mode to prevent charge accumulation. We successfully made a two-dimensional, 240 nm-width text of the 300-lettered Lord's Prayer on a gem diamond with 30 kV-30 pA FIB. The patterned text image was readable with a scanning electron microscope. Moreover, three dimensional nano-thick plate module fabrication was made successfully with an FIB and a platinum deposition, and electron energy loss spectrum (EELS) analysis was easily performed with the prepared nano plate module.

  • PDF

Flexural Behavior of Concrete Beams Reinforced with Fe based Shape Memory Alloy Bar (철계-형상기억합금 바로 제작된 콘크리트 보의 휨 거동)

  • Hong, Ki-Nam;Yeon, Yeong-Mo;Ji, Sang-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.67-76
    • /
    • 2020
  • This paper reports an experimental study to evaluate the flexural behavior of concrete beams reinforced using Fe based shape memory alloy (Fe-SMA) bars. For the experiment, a concrete beam of 200mm×300mm×2,200mm was produced, and a 4% pre-strained Fe-SMA bar was used as a tensile reinforcement. As experimental variables, type of tensile reinforcement (SD400, Fe-SMA), reinforcement ratio (0.2, 0.39, 0.59, 0.78), activation of Fe-SMA (activation, non-activation), and joint method of Fe-SMA bar (Continuous, welding, coupler) were considered. The electric resistance heating method was used to activate the Fe-SMA bar, and a current of 5A/㎟ was supplied until the specimen reached 160℃. After the upward displacement of the specimen due to the camber effect was stabilized, a three-point flexural loading experiment was performed using an actuator of 2,000 kN capacity. As a result of the experiment, it was found that the upward displacement occurred due to the camber effect as the Fe-SMA bar was activated. The specimen that activated the Fe-SMA bar had an initial crack at a higher load than the specimen that did not activate it. However, as with general prestressed concrete, the effect of the prestress by Fe-SMA activation on the ultimate state of the beam was insignificant.