• Title/Summary/Keyword: 용접입열량

Search Result 105, Processing Time 0.027 seconds

Effect of Heat Input on Girth welds properties of High strain steel pipe (입열량이 고변형률 강관 원주 용접부 특성에 미치는 영향)

  • Lee, Jin-Woo;Song, Woo-Hyun;Seo, Dong-Han;Lee, Jong-Sub
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.71-71
    • /
    • 2010
  • SBD (Strain-based design) of pipe lines have gained world-wide attention in recent years. The present research aims to evaluate the fracture characteristics of API (America Petroleum Institute) SBD X100 girth weldment that typically applied for cold climate and deep water offshore, with the focus on the influence of heat input changing with 6kJ/cm and 10kJ/cm from GMAW (Gas Metal Arc Welding). At a low heat input at 6kJ/cm, the weld metal had Multi-phase matrix (Acicular ferrite + Banite + Martensite) that could fill up both fracture toughness and strength as reported previously. Also, the weld metal exhibited 859MPa YS (Yield strength), 108J impact toughness at $-40^{\circ}C$ and 0.52mm CTOD (Crack Tip Open Displacement) at $-10^{\circ}C$. These results can be satisfied with the requirement of API SBD X100 girth weldment and Alaska pipe line project.

  • PDF

Study on the Frition Welding Characteristics of Oxygen Free High Conductivity Copper (무산소동의 마찰 용접 특성에 관한 연구)

  • 정호신;소전강
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.10-15
    • /
    • 1997
  • Copper and its alloy had been used widely because of its pronouncing characteristics on their high thermal and electrical conductivity. Various fusion welding methods, such as SMAW, SAW, GTAW, GMAW, Electroslag welding amd so on are applied to weld copper and its alloy. But fusion welding of copper has so many welding problems. THe most serious problems were poor penetration amd high thermal contration stress due to its high thermal conductivity and porosity could be formed by rapid cooling rate of fusion welding. In order to avoid such fusion welding problems, preheating, peering and heat treatment must be applied to obtain sound weld joint of copper. But preheating induce another welding problem such as grain coarsening of weld heat affected zone. This grain coarsening reduces ductility and strength of weld joint. In this view of point, friction welding of copper is triedm to obtain sound weld joint of copper by reducing metallurgical problems. This study introduced new concept of heat input for evaluating the friction weldability of copper. As a result, weldability of copper could be evaluated by this new concept of heat input.

  • PDF

Welding Characteristics of Cold Rolled Carbon Steel utilize CW Nd:YAG Laser (CW Nd:YAG 레이저를 이용한 냉연강판의 용접특성)

  • Shin B.H.;Yoo Y.T.;Shin H.J.;Ahn D.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.17-18
    • /
    • 2006
  • Laser welding of metals has been widely used to improve a wear resistance and a corrosion resistance of the industrial parts. The objective of this research works is to investigate the influence of the process parameters, such as the welding for metals with CW Nd:YAG lasers. The bead-on-plate welding tests are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the butt welding, the welding quality of the cut section, stain-stress behavior and the hardness of the welded part are investigated. From the results of the investigation, it has been shown that the optimal welding condition without defects in the vicinity of the welded area and with a good welding quality is 1400W of the laser power, 0.8m/min, 0.9m/min of welding speed and $4{\ell}$ in of pressure for shielding gas.

  • PDF

An Experiment Study for Hardness Characteristic of Weldment according to Welding Heat-Input of Vertical GMA Welding Process (수직 GMA 용접공정 입열량에 따른 용접부 경도특성에 대한 실험적 연구)

  • Park, Min-Ho;Lee, Jong-Pyo;Jin, Byeong-Ju;Kim, In-Ju;Kim, Ji-Sun;Kim, Ill-Soo
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.35-42
    • /
    • 2017
  • The GMA welding process involves large number of interdependent variables which may affect product quality, productivity and cost effectiveness. The relationships between process parameters for a vertical weldment and mechanical properties are complex because a number of process parameters are involved. To make the vertical-position welding, a method that predicts bead geometry and accomplishes the desired mechanical properties of the weldment should be developed. In addition, a reliable welding process and conditions must be implemented to reduce weld structure failure. In this study, the welding process analysis of investigates the interaction between the heat input and welding parameter(Welding current, Arc voltage, Welding speed) for predicting the weldment hardness.

Investigation on the Effect of Strength Mismatch on Residual Stresses in Welds with Different Strength Used in Buried Natural Gas Pipeline (매설 가스 배관 이종금속 용접부의 강도 불일치가 잔류응력에 미치는 영향 고찰)

  • Kim, Jong-Sung;Kim, Woo-Sik;Baek, Jong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.413-421
    • /
    • 2010
  • In this study, residual-stress distributions in welds with different strength used in natural gas pipelines are calculated by using finite-element analysis and simulating a realistic welding process. The temperature and residual-stress analysis results are compared with the real fusion profile and the application results of the Fitness-For-Service assessment code, API 579 in order to validate the finite-element analysis model and procedure. Parametric study is performed to assess the effect of welding and material variables such as mechanical strength mismatch, the strength of weld metal, reinforcement, and heat input on the residual stress distributions. Finally, on the basis of the parametric study results, the effects of these variables on residual stress distributions are investigated. In particular, the strength mismatch between base metals has an insignificant effect on residual-stress distributions.

Effect of Ti Contents on characteristics of 700Mpa Weld Metal (Ti 함량에 따른 700MPa급 용착금속의 특성 변화)

  • Park, H.K.;Kim, H.J.;Seo, J.S.;Ryoo, H.S.;Ko, J.H.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.47-47
    • /
    • 2009
  • 용착금속의 미세조직은 크게 Acicular ferrite(AF), Ferrite with aligned second phase(FS), Primary ferrite(=Grain boundary Ferrite) 등으로 나눌 수 있다. 이 중 침상형 페라이트(AF)는 인성과 강도를 동시에 증가시킬 수 있으므로 이를 다량 확보하는 것이 용접산업의 관건이다. 본 연구에서는 침상형 페라이트 발생에 기여한다고 알려진 Ti 함량을 용착금속에서 단계적으로 조절하여 나타나는 미세조직과 특성변화를 관찰하였다. 모재는 HSB-600을 사용하였으며 용접재료는 ER100S-G급의 Ti가 함유되어 있는 것(A)과 미함유된 것(B)을 사용하였다. 모재 성분의 희석을 방지하기 위해 V-Groove 가공 후 Buttering 용접을 실시하였다. 중앙에 가공된 V-그루브에 이들 재료를 적절히 조합하고 용접(입열량 20kJ/cm)하여 Ti함유량을 총 4가지(0.002~0.025% Ti)로 제어하였다. 용접 후 각각의 시편에 대해 미세조직, 충격시험, O/N분석, 성분분석 등의 시험을 진행하였다. 미세조직 관찰결과 Ti함량이 증가할수록 AF는 증가하고 FS는 감소함을 확인할 수 있었으며 충격시험결과 Ti가 많이 함유된 시편일수록 더 낮은 연성취성 천이온도(DBTT)를 나타내었다. EDS와 SEM으로 관찰한 결과 Ti함량 증가에 따라 비금속개재물의 크기는 작아지고 밀도는 높아지는 것을 확인할 수 있었으며 개재물 내에서의 Ti함량도 더 많아지는 것을 확인 할 수 있었다.

  • PDF

Evaluation of Underclad Crack Susceptibility of the SA508 Class 3 Steel for Pressure Vessels -Optimization of Heat Input- (압력용기용 SA508 class3강에 대한 underclad 균열의 감수성 평가 - 입열량의 최적화)

  • 김석원;양성호;김준구;이영호
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.139-149
    • /
    • 1995
  • Many pressure vessels for the power plants are fabricated from low alloy ferritic steels. The inner sides of the pressure vessels are commonly weld_cladded with austenitic stainless steels to minimize problems of corrosive attack. The submerged-arc welding(SAW) process is now used in preference to other processes because of the possibilities open to automation to reduce the overaII welding times. The most reliable way to avoid underclad cracks(UCC) which are often detected at the overlap of the clad beads is to use nonsusceptible steels such as SA508 class 3. At present domestically developed forging steel of SA508 cl.S is now being cladded with single layer by using 90mm wide strip, which transfers higher heat input into the base metal compared to the conventional two layers strip cladding which has been in wide use with 30-60 mm wide strip. But the current indices for the influence of heat input on crack susceptibility are not accurate enough to express the subtle difference in crack susceptibility of the steel. Therefore, the purpose of this present study is: l) To determine UCC susceptibility on domestic forging steel, SA508 cl.S cladded with single layer by using submerged arc 90mm strip and, 2) To optimize heat input range by which the crack susceptibility could be eliminated.

  • PDF

Effect of Heat Input on the Mechanical Properties of SA508 class 3 Steel Weldments with Submerged Arc Welding (SA508 class 3 서브머지드 아크용접부의 기계적 성질에 미치는 입열량의 영향)

  • Seo Yun-seok;Koh Jin-Hyun;Kim Nam-Hoon;Oh Se-Yong;Choo Kee-Nam
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.38-45
    • /
    • 2004
  • The present study is to investigate the effect of heat input on the microstructure, tensile properties and toughness of single-pass submerged arc bead-in-groove welds produced on SA508 class 3 steels. The heat input was varied in the range of 1.6, 3.2 and 5.0 kJ/mm. The toughness of weld metals was evaluated by using subsize Charpy V-notch specimens in the temperature range of -19$0^{\circ}C$ to 2$0^{\circ}C$. The weld microstructure and fractography were observed by optical and scanning electron microscopies, respectively. With increasing heat inputs, tensile strength and hardness of weld metals were decreased while elongation was increased. The poor notch toughness at 1.6 kJ/mm was attributed to the formation of ferrite with aligned second phase and banitic microstructure with high yield strength while that at 5.0 kJ/mm was due to the presence of grain boundary and polygonal ferrites. The microstructure of the intermediate energy input welds consisted of a high proportion of acicular ferrite with limited polygonal ferrites, which provide improved notch toughness.

A Study on the Characteristics of Repair Welding for Mold Steel using Continuous Wave Nd:YAG Laser (연속파형 Nd:YAG 레이저를 이용한 금형강의 보수용접 특성에 관한 연구)

  • Yoo, Young-Tae;Shin, Ho-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.7-16
    • /
    • 2010
  • In this study, wire was used as the filler material for the laser repair welding, and the phenomenon in which the supplied filler material was melted and beaded down into the specimen was examined with varying laser powers and welding speeds. The optimal processing condition was found to be the laser power of 1,300 W, the welding speed and feed wire supply speed of 0.5 ml/in and the defocused distances of +2mm. At this time, the heat input(E) was $65{\sim}75\;J/mm^2$, and no internal defect occurred. When repair welding was carried out as the optimal processing for the part that had an external defect with the radius of 2mm, the filler metal was melted, resulting in the volume smaller than the defect part and thus causing the part unfilled. Therefore, it was found to be necessary to carry out repair welding two to three times by multiple passes rather than does it only once by single pass.

The effect of Heat input, Shielding Gas(Ar80% + $CO_2$20%), PWHT on the mechanical properties of HSB600 steel Weldments (HSB600강 용접에서 입열량, 보호가스, 용접후 열처리가 미세조직과 기계적 특성에 미치는 영향)

  • Ju, Dong-Hwi;Lim, Young-Min;Kim, Nam-Hoon;Koh, Jin-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.394-397
    • /
    • 2011
  • The effects of heat input(1.4~3.2kJ/mm), shielding gas(Ar80%+$CO_2$20%) and postweld heat treatment(PWHT, $600^{\circ}C$, 40hr.) on the TMCP HSB600 steel weldments made by GMAW process were investigated. The tensile strength and CVN impact energy of as-welded specimens decreased with increasing heat input. The fine-grained acicular ferrite was mainly formed in the low heat input while polygonal and side plate ferrites were dominated in the high inputs. High performance steel for bridges requires higher performance in tensile and yield strength, toughness, weldability, etc. Thus, the purpose of the experiment is to study HSB 600 in GMAW.

  • PDF