• Title/Summary/Keyword: 용접성평가

Search Result 496, Processing Time 0.031 seconds

高張力鋼 熔接時의 問題점

  • 김영식
    • Journal of the KSME
    • /
    • v.22 no.3
    • /
    • pp.175-183
    • /
    • 1982
  • 고장력 강재 용접시의 문제점으로 용접균열, 용접부의 취화, 라멜라테어에 관해 그 발생기구와 대책을 기술했다. 고장력강재 용접기조물의 신뢰성과 안전성을 확보하기 위해서는 설계, 시공 단계에서 이상의 문제점에 관한 종합적인 평가와 배려가 이뤄져야 한다. 고장력 강재는 그 강 도를 높이기 위해 각종 합금원소를 첨가하거나 조직 열처리를 행하고 있기 때문에 용접상에 어 려움이 따르고 있다. 따라서 보다 사용성능이 우수한 구조물을 얻기 위해서는 강도가 높으면서도 용접성이 우수한 고장력 강재의 개발이 선행되어야 한다. 우리나라에서도 현재 60Kg/mm$^{2}$급 고장력 장재가 생산되고 있거니와 앞으로 더욱 고장도의 대입열 용접용 강재의 개발에 많은 노력을 기울여야 할 것이다.

  • PDF

Development of Weld Monitoring System in Aluminum Laser Welding for Car Body Application (자동차 차체 적용을 위한 알루미늄 레이저 용접에서 용접부 모니터링 시스템 개발)

  • Park, Young-Whan
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.111-111
    • /
    • 2009
  • 전 세계적으로 환경 보호의 차원에서 자동차 업체는 자동차의 연비 향상을 위한 차체의 경량화가 큰 이슈로 대두되고 있다. 이를 위해 알루미늄과 같은 경량화 소재를 이용하여 차체 조립에 투입하고자 연구 중에 있다. 이와 같은 레이저 용접 공정이 현장에 적용되기 위해서는 용접부의 품질을 실시간으로 모니터링하고 품질을 판단하여야 생산성을 극대화 할 수 있다. 그러므로 본 연구에서는 알루미늄 AA5182 알루미늄 판재의 용가 와이어를 이용한 레이저 용접에서 용접부를 모니터링 할 수 있는 시스템을 구축하였다. 이를 위하여 레이저는 4kW급 Nd:YAG 레이저를 사용하였고, 차체용 알루미늄 판재 AA5182 1.4t를 AA5356 와이어를 이용하여 용접을 수행하였다. 모니터링 센서로는 반응 범위가 190 mn~680 nm인 센서를 이용하였고, 용접 중 센서로부터 발생된 출력전류를, 신호 증폭기와 DAQ 보드를 통해 초당 10,000 samples/sec로 계측하였다. 다양한 용접조건을 이용하여 실험을 수행하였고 이를 정량적으로 분석하였다. 계측된 신호와 용접 품질은 비선형적 관계를 가지고 있으므로 본 연구에서는 용접 품질을 예측하는 방법으로 퍼지 패턴인식 알고리즘을 이용하는 방법과 계측 신호를 이용한 인장강도 예측모델을 이용하여 병렬로 품질평가를 할 수 있는 알고리즘을 구현하였다. 이를 위하여 계측된 신호와 용접 품질과의 관계를 이용하여 퍼지 규칙 베이스 정의하였고, 신경회로망 모델을 이용하여 인장강도 예측모델을 제시하였다. 또한 품질 평가 알고리즘을 기반으로 레이저 용접부의 품질평가가 가능한 GUI 프로그램을 구현하였다.

  • PDF

Measurements and Applications of Arc Welding Paramenters (아크 용접변수의 계측과 활용)

  • 최병길;정기철
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.16-23
    • /
    • 1996
  • 용접변수는 재현성을 보장하기 위하여 명시되어져야 할 모든 변수라고 정의 되어질 수 있다. 이러한 용접변수는 이음 설계, 용접부 청소, 홈가공, 예열, 후열처 리, 용접법 변수(예, 용접속도, 전압, 잔류) 등이다. 이러한 용접 변수는 용접절차서 (welding procedure apecification)에 그 내용과 측정값을 기술하도록 되어 있다. 본고에서는 좁은 의미에서 용접변수인 용접전류, 전압, 용접속도, 용접부의 온도 측정 방법을 설명하고 그 활용방법에 대하여 기술하고자 한다. 이러한 용접변수는 컴퓨터 에 접속하여 측정이 이루어 지도록 하여 측정자료의 평가, 기록 및 공정제어에 이용 될 수 있다.

  • PDF

Development of Large Diameter Hardfacing FCW for Life Extension of Hot Forging Die (열간단조 금형 수명연장을 위한 경화육성용접용 태경 FCW의 개발)

  • Kim, Sung-Ho;Jung, Yun-Ho;Baek, Seung-Hui;Jang, Jong-Hun;Park, Chul-Gyu;Woo, Hee-Chul;Jung, Byung-Ho;Cho, Sang-Myung
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.13-13
    • /
    • 2009
  • 현재 열간단조 금형을 제작함에 있어 육성용접을 실시하는 방법이 금형강 STD61, STD11 등으로 제작하는 방법에 비해 보수나 비용적인 측면에서 이점을 가지고 있기 때문에 점차적으로 증가하고 있는 추세이다. 열간단조 공정에서 금형은 $1000^{\circ}C$이상의 고온재료와 반복접촉하게 된다. 이때 이형제의 사용은 급속냉각 및 급속가열의 열피로를 가속시킨다. 또한, 금형은 반복충격에 의한 기계적 피로를 받게 된다. 이러한 금형의 사용환경을 고려한 FCW는 종래 고가의 $2.8{\sim}3.2{\Phi}$인 외국산 FCW를 사용하였으나 이를 대체한 $3.2{\Phi}$ 태경 FCW가 국내에서 개발되었다. 하지만 개발된 FCW를 사용하여 제작된 금형의 수명이 부족한 현상이 발생하였다. 이에 금형의 수명을 연장시킬 수 있는 내균열성 및 내열충격성을 확보한 태경 FCW의 개발과 개발된 FCW의 성능평가가 요구되었다. 특히 열간단조 금형에 있어서 중요한 내열충격성의 경우 가열과 냉각의 반복 Cycle에 의한 Thermal shock의 평가가 대부분이며 높은 Cycle로 인해 많은 시간이 걸리며, 또한 가열과 냉각을 오갈 수 있는 고가의 시험장치가 요구된다. 그러므로 개발된 FCW 육성용접부의 내균열성 및 내열충격성을 평가할 수 있는 방법에 대한 연구와 특히 내열충격성을 시간이 적게 걸리면서도 경제적으로 평가할 수 있는 방법에 대한 연구가 필요하다. 본 연구의 목적은 열간단조 금형 육성용접부의 내균열성 및 열충격특성을 평가할 수 있는 방법에 대한 검토와 특히 내열충격성에 대해 J.W.Kim등의 시험방법을 참고하여 시간이 적게 걸리면서 저 비용으로 열 충격특성을 평가할 수 있는 시험법을 고안하는 것이다. 이를 위한 방법으로 육성용접부의 내균열성을 평가하기 위한 상온 Bending을 실시하였고, 내열충격성을 평가하기 위한 염욕로를 이용하는 고온 Bending을 고안하여 실시하였다. 상온 Bending, 고온 Bending 모두 3점 굽힘시험을 적용하였다. 고온 Bending의 가열방법으로는 염욕로를 사용하여 시편이 대기중에서 약 $850^{\circ}C$의 온도가 될 수 있도록 하였다. 시편은 각각 열처리를 하여 요구 경도를 확보하였고, 이를 염욕로에서 5분간 가열 및 유지하여 취출 후 굽힘하중을 가하여 변위의 정도로 열충격을 평가하는 방법을 사용하였다. 상온 Bending은 극한변형량과 파단부 극한응력으로, 고온 Bending은 고온 극한변형량으로 평가를 하였고, 외국산 FCW를 사용한 육성용접부를 비교대상으로 하였다. 평가 결과 개발된 국산 $3.2{\Phi}$ 태경 FCW의 성능은 외국산 FCW와 유사하거나 우수한 것으로 평가되었고, 실제 금형을 제작하여 현장에 적용한 결과 금형의 수명이 연장된 것이 나타났다.

  • PDF

A Study on the Welding Properties of SM570TMC Steel Plate (SM570TMC 강재의 용접부 특성에 관한 연구)

  • Im, Sung Woo;Chang, In Hwa;Chung, Woo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.665-675
    • /
    • 2006
  • With building structures becoming higher and longer-spanned, the need for high-strength and reliable steel is increasing. For this reason, the SM570TMC steel plate was developed. Despite its excellent mechanical properties, however, its welding properties, which are well-known to be superior to those of other equivalent steel plates, have not been verified yet. In this study, welding specimens fabricated via SA and FCA welding, with two domestic welding materials and one Japanese welding material in site welding conditions, were evaluated.

The Problem and Improvement Plan of Ultrasonic Exploration of Weld Zone in Railway Rails (철도 레일 용접부 초음파 탐상의 문제점 및 개선방안)

  • Jang, Suk-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.123-133
    • /
    • 2004
  • The evaluation standard method of weld zone in rails is not exhibited in case of the domestic and the outside about ultrasonic inspection method. therefore, practical affairs a mans on the ground know very little about evaluation method of pass and failure. This paper discuss about ultrasonic exploration of weld zone in railway rails to know practical affairs a mans that the first, "problem and improvement direction of domestic track construction specifications applied according to a place ordering" and the second, "the method applied of ultrasonic exploration test of weld zone in railway rails".

Cold Crack Susceptibility of 700 MPa welding Consumable According Microstructure (700MPa급 용착금속의 미세조직에 따른 저온균열 감수성)

  • Seo, Jun-Seok;Kim, H.J.;Ryoo, H.S.;Park, C.K.;Lee, C.H.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.46-46
    • /
    • 2009
  • 과거 고강도강 용접부에서 발생하는 저온균열은 주로 용접열영향부에서 발생하였는데, 이러한 문제점을 해결하기 위하여 강재 메이커들은 고강도강의 용접성을 향상시키고자 노력하였다. 이러한 노력의 결과로 TMCP, HSLA 강 등이 개발되었고 이들 강재는 예열온도를 저하시킬 수 있다는 장점 때문에 보편화되어 사용되었다. 이러한 강재는 모재 예열온도를 기준으로 적용하게 되면 용착금속에서 저온균열이 발생하는 경우가 있다. 따라서 이제는 용접재료의 용접성, 즉 용접재료의 저온균열 저항성을 평가 할 수 있는 기법이 요구된다. 본 연구의 목적은 용착금속의 저온균열 저항성을 평가하는 것인데, 저온균열 저항성은 용착금속의 미세조직에 따라 다르게 나타날 수 있다. 용착금속의 합금조성은 기본적으로 용착금속에 요구되는 최저 강도와 충격인성을 만족할 수 있도록 설계한다. 하지만 유사한 강도의 유사한 합금조성이더라도 일부 합금 성분에 의해 용착금속의 미세조직들은 상이하게 나타날 수 있는데, 미세조직 특성에 의하여 용착금속의 강도와 저온인성이 결정된다. 용착금속의 저온균열 저항성을 평가하기위하여 Gapped Bead-on-Groove(G-BOG) 시험에 사용된 모재는 50mm 두께의 mild steel을 사용하였으며, 모재의 희석을 방지하기위해 15mm 깊이로 V-groove 가공 후 buttering 용접 하였다. 용접된 시편은 다시 5mm 깊이로 V-groove로 2차 가공 후 Ar + 20% $Co_2$ gas를 사용하여 용접하였다. 용접재료는 ER-100S-G grade로 비슷한 합금조성을 갖는 2 종류를 사용하였다. A용접재료는 Ti 이 0.1% 함유 되었으며, B용접재료는 Ti 함유되지 않은 것을 사용하였다. 또한 예열 온도에 따라 저온균열 감수성을 평가하기위하여 모재의 예열온도를 각각 상온, $50^{\circ}C,\;75^{\circ}C,\;100^{\circ}C$로 하여 실험을 진행하였다. 용착금속의 미세조직을 확인해본 결과 Ti 함유된 A 용착금속 미세조직은 대부분 침상형페라이트로 나타났으며, Ti 함유되지 않은 B 용착금속 미세조직은 대부분 베이나이트로 나타났다. G-BOG 시험 결과 Ti 함유된 A 시편이 Ti 함유되지 않은 B 시편보다 저온균열 발생량이 적었다. 이는 용착금속의 미세조직분포 및 특성에 따라 저온균열감수성이 다르다는 것을 나타낸다.

  • PDF