• 제목/요약/키워드: 용융아연도금

검색결과 152건 처리시간 0.024초

용융아연도금한 강판의 기술적 성질에 관한 연구 (A Study on Mechanical Properties of Galvanized Steel Plate)

  • 정동원;곽창섭;최종술
    • 한국표면공학회지
    • /
    • 제16권4호
    • /
    • pp.153-159
    • /
    • 1983
  • The growth rate equation of Fe-Zn alloy layer was represented by x = Kt, and hence the growth of alloy layer was considered to be controlled by diffusion process. The constituent of alloy layer formed on the steel surface was identified to be intermetallic compound of Fe3Zn10 and FeZn10. The ultimate tensile strength and elongation of galvanized steel showed a nearly constant value at the thickness below about 30$\mu\textrm{m}$, and both properties decreased with increasing thickness above about 30$\mu\textrm{m}$. In the case of galvanied steel with a great thickness of alloy layer, crack was formed below yield point of base metal, which is considered to be attributed to the alloy layer failure.

  • PDF

보물 제930호 이경석 지팡이에 사용된 장석의 제작기법 고찰 (Study on the Manufacturing Techniques of Metallic Ornament of Treasure 930, the Staffs of Yi Gyeong-seok)

  • 이재성;전익환
    • 보존과학회지
    • /
    • 제31권3호
    • /
    • pp.309-318
    • /
    • 2015
  • 조선의 18대 왕인 현종이 당시의 원로대신 이경석에게 의자와 함께 하사한 지팡이는 국가에서 관장하는 제작기법과 양식을 알 수 있는 대표적인 조선시대 공예품이다. 지팡이의 장석을 분석한 결과, 지팡이 몸통에 살포가 연결된 금속제 끝 장식은 먼저 철판을 둥글게 말아 원기둥 형태를 만들고 황동으로 도금하였다. 도금된 부분은 살포와 연결된 금속제 끝 장식에만 국한되고 있으며, 동일한 철 소재로 제작된 살포에는 도금되지 않았다. 칼장식에는 20% 내외의 아연이 포함된 황동이 그대로 사용된 반면 살포 연결부는 철판 위에 황동도금을 했다. 이는 제작당시에 칼장식과 살포 연결부의 표면 색조가 동일하였음을 의미하는 것으로 기능적인 측면에서 바탕소재를 달리할 수밖에 없는 상황에서 외견상의 조화를 추구한 결과로 추정된다. 여기에 적용된 도금법으로 수은아말감, 구리박도금, 구리분말도포, 포목상감, 용융 금속 침적 등 다양한 도금법을 고려할 수 있으며, 분석된 결과는 용융 금속을 이용한 도금법이 적용된 것으로 나타났다. 황동으로 제작된 칼코는 주석납땜으로 접합하였다. 칼날을 고정시키기 위해 사용된 리벳은 강도와 유연성을 모두 충족시킬 수 있는 최적의 소재로 순철이 사용되었다.

용융아연도금강판에서 어닐링 온도변화에 따른 화합물화가 도금층 기계적 특성 및 마찰계수에 미치는 영향 (The Influence of Annealing Temperature on Mechanical Properties and Friction Coefficient of Coating Layer in Galvannealed Sheet Steel)

  • 전성진;이정민;김동환;김동진;강연식;김병민
    • 소성∙가공
    • /
    • 제14권8호통권80호
    • /
    • pp.696-703
    • /
    • 2005
  • In the modern days, a galvannealed sheet steel (GA) instead of a cold rolled steel sheet has been widely used as an alternative to extend the life of automotive body. Accordingly, the mechanical properties of GA for automobiles were taken into account and studied by examining their variation with annealing temperature. To clarify the effect of surface features on the mechanical and frictional properties of GA, the several tests such as nanoindentation, Vickers hardness and nano scratch test were executed. The frictional characteristics of coating layers of GA were examined through nano scratch test in this study. The friction coefficient of coating layers on the surface was obtained from the nano scratch. The variation of friction coefficient versus velocity and pressure was taken into consideration in this paper. Hardness and elastic modulus of coating layer were increased as increasing annealing temperature.

도금액의 내부 유입 방지를 위한 래버린스 시일 설계 (Labyrinth Seal Design for Preventing Internal Inflow of Plating Solution)

  • 이덕규;김완두
    • Tribology and Lubricants
    • /
    • 제33권6호
    • /
    • pp.256-262
    • /
    • 2017
  • Molten zinc plating is a process in which zinc is thinly coated over a metallic or non-metallic surface. It is used in various industrial fields for corrosion resistance and decoration. During the process, a steel sheet is passed through a roll that rotates inside the molten zinc liquid in the temperature range of $460^{\circ}C$ to $680^{\circ}C$, and the plating liquid flows into the roll causing abrasion and erosion of the roll surface. This problem is known to accelerate the replacement cycle of the roll and cause considerable economic loss owing to production line stoppage. Here, we propose a mechanism that operates at high temperature and pressure with a labyrinth type seal design to resolve this problem. We theoretically investigate the flow of the plating solution inside the seal and compute the minimum rotation speed required to prevent the plating solution from entering the seal chamber. In addition, we calculate the thermal deformation of the seal during operation and display thermally deformed dimensions at high temperatures. To verify the theoretical results, we perform experiments using pilot test equipment working in the actual plating environment. The experimental results are in good agreement with theoretical results. We expect our results to contribute towards the extension of the roll's life span and thereby reduce the economic losses.

복합조직형 고강도 용융아연 도금강판의 도금특성에 미치는 강중 Si의 영향 (Effects of Silicon on Galvanizing Coating Characteristics in Dual Phase High Strength Steel)

  • 전선호;진광근;신광수;이준호;손호상
    • 대한금속재료학회지
    • /
    • 제47권7호
    • /
    • pp.423-432
    • /
    • 2009
  • In the galvanizing coating process, the effects of the silicon content on the coatability and wettability of molten zinc were investigated on Dual-Phase High Strength Steels (DP-HSS) with various Si contents using the galvanizing simulator and dynamic reactive wetting systems. DP-HSS showed good coatability and a well-developed inhibition layer in the range of Si content below 0.5 wt%. Good coatability was the results of the mixed oxide $Mn_{2}SiO_{4}$, being formed by the selective oxidation on the surface, with a low contact angle in molten zinc and a large fraction of oxide free surface that provided a sufficient site for the molten zinc to wet and react with the substrate. On the other hand, with more than 0.5 wt%, DP-HSS exhibited poor coatability and an irregularly developed inhibition layer. The poor coatability was due to the poor wettability that resulted from the development of network-type layers of amorphous ${SiO}_{2}$, leading to a high contact angle in molten zinc, on the surface.

단부 아연 과도금 방지를 위한 단부 와동 구조의 분석 (Analysis of a Vortex Structure Near the Strip Edge for Preventing Edge Zn Overcoation)

  • 조중원;김상준;안기장;정명균
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1105-1113
    • /
    • 2003
  • In the gas wiping process of continuous hot-dip galvanizing, edge overcoating develops near the edge of the steel strip. The overcoating is supposed to occur due to the reduced impact pressure of wiping gas on the strip surface. The purpose of this study is to investigate the effect of edge vortex on the reduced impact pressure. Three-dimensional unsteady flows are simulated using a commercial code, STAR-CD. Standard k-$\varepsilon$ model is used as a turbulence model. It is found that an alternating vortex structure in the vicinity of strip edge is developed by buckling of opposed jet streams and that the reduced amount of impact pressure at strip edge becomes smaller as the air knife gets closer to the strip. The effect of edge baffle on the reduced impact pressure is also investigated.

슈퍼픽셀 DBSCAN 군집 알고리즘을 이용한 용융아연도금 강판의 부식이미지 분석 (Corrosion image analysis on galvanized steel by using superpixel DBSCAN clustering algorithm)

  • 김범수;김연원;이경황;양정현
    • 한국표면공학회지
    • /
    • 제55권3호
    • /
    • pp.164-172
    • /
    • 2022
  • Hot-dip galvanized steel(GI) is widely used throughout the industry as a corrosion resistance material. Corrosion of steel is a common phenomenon that results in the gradual degradation under various environmental conditions. Corrosion monitoring is to track the degradation progress for a long time. Corrosion on steel plate appears as discoloration and any irregularities on the surface. This study developed a quantitative evaluation method of the rust formed on GI steel plate using a superpixel-based DBSCAN clustering method and k-means clustering from the corroded area in a given image. The superpixel-based DBSCAN clustering method decrease computational costs, reaching automatic segmentation. The image color of the rusty surface was analyzed quantitatively based on HSV(Hue, Saturation, Value) color space. In addition, two segmentation methods are compared for the particular spatial region using their histograms.

연속 아연 도금 코-팅 두께에 관한 수치 해석적 연구 (A Numerical Analysis on the Coating Thickness in Continuous Hot-Dip Galvanizing)

  • 이동원;신승영;김병지;권영두;권순범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2955-2960
    • /
    • 2007
  • To control the coating thickness of zinc in the process of continuous hot-dip galvanizing, it is known from early day that the gas wiping through an air knife system is the most effective because of the obtainable of uniformity of coating thickness, possibility of thin coating, working ability in high speed and simplicity of control. But, the gas wiping using in the galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. And, it is known that the problem of splashing is caused mainly by the existence of separation bubble at the neighbor of the strip surface. In theses connections, in the present study, we proposed two kinds of air knife systems having the same expansion rate of nozzle, and the jet structures and coating thicknesses from a conventional and new proposed nozzles are compared. In numerical analysis, the governing equations consisted of two-dimensional time dependent Navier-Stokes equations, standard ${\kappa}-{\varepsilon}$ turbulence model to solve turbulence stress and so on are employed. As a result, it is found that it had better to use the constant rate nozzle from the point view of the energy saving to obtain the same coating thickness. Also, to reduce the size of separation bubble and to enhance the cutting ability at the strip, it is recommendable to use an air knife having the constant expansion rate nozzle.

  • PDF

연속 아연 도금 두께에 관한 수치 해석적 연구 (A NUMERICAL STUDY ON THE COATING THICKNESS IN CONTINUOUS HOT-DIP GALVANIZING)

  • 이동원;신승영;조태석;권영두;권순범
    • 한국전산유체공학회지
    • /
    • 제14권1호
    • /
    • pp.1-8
    • /
    • 2009
  • To control the coating thickness of zinc in the process of continuous hot-dip galvanizing, it is known from early days that the gas wiping through an air knife system is the most effective because of the obtainable of uniformity of coating thickness, possibility of thin coating, working ability in high speed and simplicity of control. But, the gas wiping using in the galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. Also, it is known that the problem of splashing directly depends upon the galvanizing speed and nozzle stagnation pressure. In theses connections, in the present study, we proposed two kinds of air knife systems having the same expansion rate of nozzle, and the jet structures and coating thicknesses from a conventional and new proposed nozzles are compared. In numerical analysis, the governing equations consisted of two-dimensional time dependent Navier-Stokes equations, standard k-e turbulence model to solve turbulence stress and so on are employed. As a result, it is found that it had better to use the constant rate nozzle from the point view of the energy saving to obtain the same coating thickness. Also, to enhance the cutting ability at the strip, it is advisable to use an air knife with the constant expansion rate nozzle.

고강도 용융아연 도금강판의 파우더링 특성에 미치는 실리콘 및 합금화 열처리의 영향 (Effect of Silicon in Steels and Galvannealing Heat Cycles on Powdering Behavior of High Strength Galvannealed Steels)

  • 이호종;오용택;김종상
    • 한국표면공학회지
    • /
    • 제33권2호
    • /
    • pp.135-144
    • /
    • 2000
  • Hot-dip galvannealed sheet (GA) with high strength of $45kg/mm^2$ in tensile strength, has developed for automotive applications. However, for a successful application, the powdering behaviour of GA must be minimized. The powdering of galvannealed coatings was reduced as the silicon content in the steel increased. Rapid heating and rapid cooling rate during the galvannealing process improved the powdering resistance due to the suppression of not only the ξ phase, but also the $ \Gamma _1$, phase. An analysis of the Fe-Zn alloy phases and its relation to the powdering behaviour are discussed with SEM micrographs.

  • PDF