• Title/Summary/Keyword: 용어 필터링

Search Result 14, Processing Time 0.032 seconds

Classification Performance of News Filtering System by Fuzzy Inference and Kohonen Network (퍼지추론과 코호넨 신경망을 사용한 뉴스 필터링 시스템의 분류 능력)

  • Kim, Jong-Wan;Cho, Kyu-Cheol;Kim, Byeong-Man
    • Annual Conference of KIPS
    • /
    • 2003.11a
    • /
    • pp.291-294
    • /
    • 2003
  • 많은 양의 유즈넷 뉴스 중에서 찾고자 하는 정확한 정보를 빠른 시간 안에 검색하고, 원하는 정보만 필터링 하는 것은 중요하다. 하지만 뉴스 문서는 이메일과 달라서 미리 자신에게 맞는 뉴스그룹을 등록해 주어야만 정보를 얻을 수 있다. 본 연구에서는 다양한 뉴스그룹들 중에서 사용자와 취향이 가장 유사한 뉴스그룹을 코호넨 신경망을 이용하여 분류하는 서비스를 제공한다. 신경망을 학습시키기 위한 뉴스 문서의 키워드들을 선택하기 위해 예제 문서들로부터 후보 용어들을 추출하고 퍼지 추론을 적용하여 대표 용어들을 선택한다. 뉴스 필터링 시스템의 분류 성능을 평가하기 위하여 유클리드 거리 면에서 비교한 결과, 제안한 방법의 유용성을 확인할 수 있었다.

  • PDF

A Web Document Filtering System for Animals (웹에서 동물영역 관련문서 필터링)

  • 김상모;김원우;변영태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.57-59
    • /
    • 2000
  • 인터넷에 돌아다니는 정보의 양은 무한정에 가까워지고 있고 이용자는 필요한 정보들을 얻을 수 있게 되었으나 검색 가능한 정보의 양이 폭발적으로 증가함에 따라 이용자는 정보검색을 하는데 있어 어려움이 따랐고, 이는 원하는 정보만을 필터링하여 보여주는 정보검색방법이 필요하게 되었다. 본 연구에서는 웹 사용자들이 정보검색을 하는데 원하는 정보를 정확하게 찾아주기 위해 웹 문서에 대한 TAG 가중치와 관련용어 영역지식의 구축 및 웹 문서 평가작업을 통한 Term의 웹 문서 DF테이블의 구축을 이용한 필터링 방법을 제안하고 그 유효성을 확인하였다.

  • PDF

Development of geo-coding module prototype on water hazard information (수재해 정보 지오코딩 모듈 프로토타입 개발)

  • BAECK, Seung Hyub;PARK, Gwang-Ha;HWANG, Eui-Ho;CHAE, Hyo-Sok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.476-476
    • /
    • 2017
  • 최근 갑작스런 폭우로 인한 제방 붕괴, 침수 및 지진 등과 같은 재해 발생 시 추가 피해를 방지하고 주민들의 긴급대피를 도운 건 SNS를 통한 현장 정보와 경보 메시지의 지속적인 전파이다. 최근의 SNS는 재난정보에서도 활용할 수 있을 정도로 진화하였다. 국가재난정보 중 수재해 관련 정보를 추출하여 다양한 주제도위에 중첩으로 공간정보를 제공할 수 있는 재난정보 제공을 위한 웹서비스를 개발하고자 하였다. 수재해 정보를 필터링하기 위하여 우선 관련된 키워드 선정이 필요하며, 기본적인 키워드는 하천일람표를 참고하여 6개 권역 및 하천이름을 선정하였다. 또한, 한강 홍수 통제소의 수자원 용어사전과 (사)한국물학술단체연합회에서 발간한 물용어집을 참고하여 수재해 관련 용어들 약 300여개를 추가하였다. 선정된 용어들은 1차적으로 적재된 데이터베이스에서 수재해 정보 관련 필터링을 하는데 사용되며, 비정형 데이터들을 필터링하고 주소 정보 검색 및 추출을 통하여 정형화 하게 된다. 추출된 주소정보에 대하여 개발한 지오코딩 모듈을 적용하여 수재해 항목에 대해 좌표정보를 업데이트 하게 된다. 가뭄, 집중호우, 홍수 등의 수재해 정보별, 또한 일자별 그룹화 및 구조화를 진행하고 해당되는 정보를 공간정보 오픈플랫폼 API를 활용하여 지도상에 가시화할 수 있다. 개발한 지오코딩 모듈을 이용하여 실제 테이블 정보를 구성하여 데이터베이스에 수재해 정보 지오코딩 테이블을 구성하여 테스트 모의하였다. 재난정보 중 홍수, 가뭄에 대한 선택정보와 시간정보를 매개변수로 받는 XML 웹서비스 테스트로 검증을 하였다. 본 연구를 통하여 재난정보 가시화에 있어서 사용자가 조회하고자 하는 유형별, 날짜별 선택이 가능한 공간적 정보를 검색 및 확인할 수 있게 되었다. 개발한 수재해 정보 지오코딩 모듈 프로토 타입은 수재해 정보 플랫폼 융합기술 연구단에서 개발하는 핵심 목표시스템 내 재난정보 제공시스템에 적용 가능하며, 수재해 정보에 대하여 대국민 서비스가 가능할 것으로 사료된다.

  • PDF

Usenet News Filtering by Using Statistical Coefficient of Determination (통계적 결정계수를 이용한 유즈넷 뉴스 필터링)

  • 김종완;김희재;김병만
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2003.11a
    • /
    • pp.747-752
    • /
    • 2003
  • 많은 양의 유즈넷 뉴스 중에서 사용자가 찾고자 하는 정확한 정보를 빠른 시간 안에 검색하고, 원하는 정보만 필터링 하는 것은 중요하다. 그러나 뉴스 문서는 이메일과 달라서 미리 자신에게 맞는 뉴스그룹을 등록해 주어야만 정보를 얻을 수 있다. 본 연구에서는 다양한 뉴스그룹들 중에서 사용자와 취향이 가장 유사한 뉴스그룹을 분류하여 뉴스 문서의 키워드들을 선택하기 위해 예제 문서들로부터 후보 용어들을 추출하고 퍼지 추론을 적용하여 대표용어들을 선택한다. 이에 본 연구에서는 통계적인 결정계수를 도입하여 불필요한 차원을 제거한 후 신경망을 학습시키는 새로운 방법을 제안한다. 제안된 방법은 모든 차원을 활용할 때 보다 클러스터간 거리와 표준편차, 클러스터간 거리의 척도 면에서 우수한 분류 성능을 보여줌을 확인하였다.

  • PDF

Design of Youtube Video Filtering Web Service based on Reliability Analysis of Terms (용어 신뢰도 기반 유튜브 영상 필터링 웹 서비스 설계)

  • Han, So-Hyun;Shin, Hee-Won;Hwang, Yoon-Jo;Kim, Yoonhee
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.651-654
    • /
    • 2020
  • 유튜브 등의 1인 미디어 플랫폼 열풍과 반대로, 이에 대한 엄격한 방송 규약은 존재하지 않아 생기는 여러 사회적 문제가 대두되고 있다. 이러한 1인 미디어 시청자는 원하는 정보를 찾기 위해 영상 제공자가 제공하는 정보에만 의존하여 영상을 선택하고 내용을 확인하여야 한다. 그 결과 의도한 주제와 맞지 않은 영상을 시청하게 되는 비효율성을 해결하기 위해, 본 연구에서는 용어 신뢰도 기반 유튜브 영상 필터링 웹 서비스(YouChoose)를 제안한다. YouChoose는 유튜브 리뷰 영상의 음성을 자연어 처리 기법을 이용하여 사전 처리하고 신뢰도를 도출해 사용자에게 제공함으로써 검색 시 의도와 일치하는 영상을 직접 시청 전에 추천 받을 수 있도록 한다.

선박의 흘수표 인식을 통한 흘수선 높이 추정 방법

  • 최원진;문성배
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.381-382
    • /
    • 2022
  • 흘수는 선체가 물속에 얼마나 잠겨있는지를 나타내는 용어로, 선박에서는 화물의 양을 계산하거나 안정성을 평가하기 위해 흘수를 측정한다. 흘수를 측정하는 방법으로는 항해사가 부두에서 육안으로 확인하거나, 사다리를 타고 내려가 직접 확인하는 방법이 있다. 이러한 방법들은 경우에 따라 흘수 측정이 불가능하거나, 추락의 위험이 항상 존재한다는 문제가 있다. 이러한 문제를 해결하기 위해 드론 등을 통해 카메라로 선박의 흘수선 부근을 촬영하고, 필터링 및 이미지 검출 기법을 사용하여 선박의 흘수선을 탐지하는 방안을 제시하였다.

  • PDF

Performance Analysis by utilizing a Determination Method of Usenet News Groups (유즈넷 뉴스 그룹 결정 방법을 활용한 성능평가)

  • 김종완;김희재;김병익
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2004.06a
    • /
    • pp.67-72
    • /
    • 2004
  • 않은 양의 유즈넷 뉴스 중에서 사용자가 찾고자 하는 정확한 정보를 빠른 시간 안에 검색하고, 원하는 정보만 필터링 하는 것은 중요하다. 그러나 뉴스 문서는 이메일과 달라서 미리 자신에게 맞는 뉴스그룹을 등록해 주어야만 정보를 얻을 수 있다. 본 연구에서는 다양한 뉴스그룹들 중에서 사용자의 취향과 유사한 뉴스그룹들을 코호넨 신경망을 이용하여 추천해주는 방법을 제시한다. 신경망을 학습시키기 위한 뉴스 문서의 키워드들을 선택하기 위해 예제 문서들로부터 후보 용어들을 추출하고 퍼지 추론을 적용하여 대표 용어들을 선택한다. 하지만 신경망의 학습 패턴을 관찰해 보면, 많은 부분이 비어있는 희소성 문제를 발견할 수 있다. 이에 본 연구에서는 통계적인 결정계수를 도입하여 불필요한 차원을 제거한 후 신경망을 학습시키는 새로운 방법을 제안한다. 제안된 방법은 모든 차원을 활용할 때 보다 클러스터내 거리와 클러스터간 거리의 척도를 이용한 클러스터 중첩도 면에서 우수한 분류 성능을 보여줌을 확인하였다.

  • PDF

Simulation Study on E-commerce Recommender System by Use of LSI Method (LSI 기법을 이용한 전자상거래 추천자 시스템의 시뮬레이션 분석)

  • Kwon, Chi-Myung
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.3
    • /
    • pp.23-30
    • /
    • 2006
  • A recommender system for E-commerce site receives information from customers about which products they are interested in, and recommends products that are likely to fit their needs. In this paper, we investigate several methods for large-scale product purchase data for the purpose of producing useful recommendations to customers. We apply the traditional data mining techniques of cluster analysis and collaborative filtering(CF), and CF with reduction of product-dimensionality by use of latent semantic indexing(LSI). If reduced product-dimensionality obtained from LSI shows a similar latent trend of customers for buying products to that based on original customer-product purchase data, we expect less computational effort for obtaining the nearest-neighbor for target customer may improve the efficiency of recommendation performance. From simulation experiments on synthetic customer-product purchase data, CF-based method with reduction of product-dimensionality presents a better performance than the traditional CF methods with respect to the recall, precision and F1 measure. In general, the recommendation quality increases as the size of the neighborhood increases. However, our simulation results shows that, after a certain point, the improvement gain diminish. Also we find, as a number of products of recommendation increases, the precision becomes worse, but the improvement gain of recall is relatively small after a certain point. We consider these informations may be useful in applying recommender system.

  • PDF

The Development of the Korean Medicine Symptom Diagnosis System Using Morphological Analysis to Refine Difficult Medical Terminology (전문용어 정제를 위한 형태소 분석을 이용한 한의학 증상 진단 시스템 개발)

  • Lee, Sang-Baek;Son, Yun-Hee;Jang, Hyun-Chul;Lee, Kyu-Chul
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.2
    • /
    • pp.77-82
    • /
    • 2016
  • This paper presents the development of the Korean medicine symptom diagnosis system. In the Korean medicine symptom diagnosis system, the patient explains their symptoms and an oriental doctor makes a diagnosis based on the symptoms. Natural language processing is required to make a diagnosis automatically through the patients' reports of symptoms. We use morphological analysis to get understandable information from the natural language itself. We developed a diagnosis system that consists of NoSQL document-oriented databases-MongoDB. NoSQL has better performance at unstructured and semi-structured data, rather than using Relational Databases. We collect patient symptom reports in MongoDB to refine difficult medical terminology and provide understandable terminology to patients.

Automatic Determination of Usenet News Groups from User Profile (사용자 프로파일에 기초한 유즈넷 뉴스그룹 자동 결정 방법)

  • Kim, Jong-Wan;Cho, Kyu-Cheol;Kim, Hee-Jae;Kim, Byeong-Man
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.142-149
    • /
    • 2004
  • It is important to retrieve exact information coinciding with user's need from lots of Usenet news and filter desired information quickly. Differently from email system, we must previously register our interesting news group if we want to get the news information. However, it is not easy for a novice to decide which news group is relevant to his or her interests. In this work, we present a service classifying user preferred news groups among various news groups by the use of Kohonen network. We first extract candidate terms from example documents and then choose a number of representative keywords to be used in Kohonen network from them through fuzzy inference. From the observation of training patterns, we could find the sparsity problem that lots of keywords in training patterns are empty. Thus, a new method to train neural network through reduction of unnecessary dimensions by the statistical coefficient of determination is proposed in this paper. Experimental results show that the proposed method is superior to the method using every dimension in terms of cluster overlap defined by using within cluster distance and between cluster distance.