• Title/Summary/Keyword: 요인분해

Search Result 452, Processing Time 0.03 seconds

Development of Functional Halogenated Phenylpyrrole Derivatives (기능성 할로겐화 페닐피롤 )

  • Min-Hee Jung;Hee Jeong Kong;Young-Ok Kim;Jin-Ho Lee
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.842-850
    • /
    • 2023
  • Pyrrolnitrin, pyrrolomycin, and pyoluteorin are functional halogenated phenylpyrrole derivatives (HPDs) derived from microorganisms with diverse antimicrobial activities. Pyrrolnitrin is a secondary metabolite produced from L-tryptophan through four-step reactions in Pseudomonas fluorescens, Burkholderia cepacia, Serratia plymuthica, etc. It is currently used for the treatment of superficial dermatophytic fungal infections, has high antagonistic activities against soil-borne and foliar fungal infections, and has many industrial applications. Since pyrrolnitrin is easily decomposed by light, it is difficult to widely use it outdoors. As an alternative, fludioxonil, a synthetically produced non-systemic surface fungicide that is structurally similar and has excellent light stability, has been commercialized for seed and foliar treatment of plants. However, due to its high toxicity to aquatic organisms and adverse effects in human cell lines, many countries have established maximum residue levels and strictly control its levels. Pyrrolomycin and pyoluteorin, which have antibiotic/antibiofilm activity against Gram-positive bacteria and high anti-oomycete activity against the plant pathogen Pythium ultimum, respectively, were isolated and identified from microorganisms. This review summarizes the biosynthesis and production of natural pyrrolnitrin derived from bacteria and the characteristics of synthetic fludioxonil and other natural phenylpyrrole derivatives among the HPDs. We expect that a plethora of highly effective, novel HPDs that are safe for humans and environments will be developed through the generation of an HPD library by microbial biosynthesis and chemical synthesis.

High Remineralization and Denitrification Activity in the Shelf Sediments of Dok Island, East Sea (동해 독도 사면 퇴적물의 높은 재광물화와 탈질소화)

  • Jeong, Jin-Hyun;Kim, Dong-Seon;Lee, Tae-Hee;An, Soon-Mo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.2
    • /
    • pp.80-89
    • /
    • 2009
  • The rates of sediment oxygen demand(SOD) and denitrification(DNF) were measured using $^{15}N$ isotope pairing technique in intact sediment cores in the shelf of Dok Island. The SOD and DNF in the continental shelf of Dok Island were ranged from 1.04 to $9.08\;mmol\;m^{-2}\;d^{-1}$ and from 7.06 to $37.67\;{\mu}mol\;m^{-2}\;d^{-1}$, respectively. The SOD and DNF values in this study are higher than typical deep sea sediment. The SOD and DNF in this study were high in the high organic matter content sediment and high organic matter content was promotive of coupled nitrification-denitrification. Organic carbon contents in surface sediment ranged from 1.8 to 2.4%, which is higher than typical deep sea sediments. Therefore we conclude that the organic matter content in surface sediment is determined by the nature of the export production not the water depth in East sea sediment and the nature of the export production also determines remineralization processes such as SOD and DNF in East sea/Ulleung Basin sediment.

Exploring the role and characterization of Burkholderia cepacia CD2: a promising eco-friendly microbial fertilizer isolated from long-term chemical fertilizer-free soil

  • HyunWoo Son;Justina Klingaite;Sihyun Park;Jae-Ho Shin
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.394-403
    • /
    • 2023
  • In the pursuit of sustainable and environmentally-friendly agricultural practices, we conducted an extensive study on the rhizosphere bacteria inhabiting soils that have been devoid of chemical fertilizers for an extended period exceeding 40 years. Through this investigation, we isolated a total of 80 species of plant growth-promoting rhizosphere bacteria and assessed their potential to enhance plant growth. Among these isolates, Burkholderia cepacia CD2 displayed remarkable plant growth-promoting activity, making it an optimal candidate for further analysis. Burkholderia cepacia CD2 exhibited a range of beneficial characteristics conducive to plant growth, including phosphate solubilization, siderophore production, denitrification, nitrate utilization, and urease activity. These attributes are well-known to positively influence the growth and development of plants. To validate the taxonomic classification of the strain, 16S rRNA gene sequencing confirmed its placement within the Burkholderia genus, providing further insights into its phylogenetic relationship. To delve deeper into the potential mechanisms underlying its plant growth-promoting properties, we sought to confirm the presence of specific genes associated with plant growth promotion in CD2. To achieve this, whole genome sequencing (WGS) was performed by Plasmidsaurus Inc. (USA) utilizing Oxford Nanopore technology (Abingdon, UK). The WGS analysis of the genome of CD2 revealed the existence of a subsystem function, which is thought to be a pivotal factor contributing to improved plant growth. Based on these findings, it can be concluded that Burkholderia cepacia CD2 has the potential to serve as a microbial fertilizer, offering a sustainable alternative to chemical fertilizers.

Development of a Climate Change Vulnerability Index on the Health Care Sector (기후변화 건강 취약성 평가지표 개발)

  • Shin, Hosung;Lee, Suehyung
    • Journal of Environmental Policy
    • /
    • v.13 no.1
    • /
    • pp.69-93
    • /
    • 2014
  • The aim of this research was to develop a climate change vulnerability index at the district level (Si, Gun, Gu) with respect to the health care sector in Korea. The climate change vulnerability index was esimated based on the four major causes of climate-related illnesses : vector, flood, heat waves, and air pollution/allergies. The vulnerability assessment framework consists of six layers, all of which are based on the IPCC vulnerability concepts (exposure, sensitivity, and adaptive capacity) and the pathway of direct and indirect impacts of climate change modulators on health. We collected proxy variables based on the conceptual framework of climate change vulnerability. Data were standardized using the min-max normalization method. We applied the analytic hierarchy process (AHP) weight and aggregated the variables using the non-compensatory multi-criteria approach. To verify the index, sensitivity analysis was conducted by using another aggregation method (geometric transformation method, which was applied to the index of multiple deprivation in the UK) and weight, calculated by the Budget Allocation method. The results showed that it would be possible to identify the vulnerable areas by applying the developed climate change vulnerability assessment index. The climate change vulnerability index could then be used as a valuable tool in setting climate change adaptation policies in the health care sector.

  • PDF

Hydrogeochemical and Environmental Isotope Study of Groundwaters in the Pungki Area (풍기 지역 지하수의 수리지구화학 및 환경동위원소 특성 연구)

  • 윤성택;채기탁;고용권;김상렬;최병영;이병호;김성용
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.4
    • /
    • pp.177-191
    • /
    • 1998
  • For various kinds of waters including surface water, shallow groundwater (<70 m deep) and deep groundwater (500∼810 m deep) from the Pungki area, an integrated study based on hydrochemical, multivariate statistical, thermodynamic, environmental isotopic (tritium, oxygen-hydrogen, carbon and sulfur), and mass-balance approaches was attempted to elucidate the hydrogeochemical and hydrologic characteristics of the groundwater system in the gneiss area. Shallow groundwaters are typified as the 'Ca-HCO$_3$'type with higher concentrations of Ca, Mg, SO$_4$and NO$_3$, whereas deep groundwaters are the 'Na-HCO$_3$'type with elevated concentrations of Na, Ba, Li, H$_2$S, F and Cl and are supersaturated with respect to calcite. The waters in the area are largely classified into two groups: 1) surface waters and most of shallow groundwaters, and 2) deep groundwaters and one sample of shallow groundwater. Seasonal compositional variations are recognized for the former. Multivariate statistical analysis indicates that three factors may explain about 86% of the compositional variations observed in deep groundwaters. These are: 1) plagioclase dissolution and calcite precipitation, 2) sulfate reduction, and 3) acid hydrolysis of hydroxyl-bearing minerals(mainly mica). By combining with results of thermodynamic calculation, four appropriate models of water/ rock interaction, each showing the dissolution of plagioclase, kaolinite and micas and the precipitation of calcite, illite, laumontite, chlorite and smectite, are proposed by mass balance modelling in order to explain the water quality of deep groundwaters. Oxygen-hydrogen isotope data indicate that deep groundwaters were originated from a local meteoric water recharged from distant, topograpically high mountainous region and underwent larger degrees of water/rock interaction during the regional deep circulation, whereas the shallow groundwaters were recharged from nearby, topograpically low region. Tritium data show that the recharge time was the pre-thermonuclear age for deep groundwaters (<0.2 TU) but the post-thermonuclear age for shallow groundwaters (5.66∼7.79 TU). The $\delta$$\^$34/S values of dissolved sulfate indicate that high amounts of dissolved H$_2$S (up to 3.9 mg/1), a characteristic of deep groundwaters in this area, might be derived from the reduction of sulfate. The $\delta$$\^$13/C values of dissolved carbonates are controlled by not only the dissolution of carbonate minerals by dissolved soil CO$_2$(for shallow groundwaters) but also the reprecipitation of calcite (for deep groundwaters). An integrated model of the origin, flow and chemical evolution for the groundwaters in this area is proposed in this study.

  • PDF

Chemical Mass Balance of Materials in the Keum River Estuary: 1. Seasonal Distribution of Nutrients (금강하구의 물질수지: 1. 영양염의 계절적 분포)

  • Yang, Jae-Sam;Jeong, Ju-Young;Heo, Jin-Young;Lee, Sang-Ho;Choi, Jin-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.71-79
    • /
    • 1999
  • As part of an on-going project investigating flux of materials in the Keum River Estuary, we have monitored seasonal variations of nutrients, suspended particulate matter (SPM), chlorophyll, and salinity since 1997. Meteorological data and freshwater discharge from the Keum River Dike were also used, Our goal was to answers for (1) what is the main factor for the seasonal fluctuation of nutrients in the Keum River Estuary? and (2) are there any differences in nutrient distributions before and after the Keum River Dike construction? Nitrate concentrations in the Keum River water were kept constant through the year. Whereas other nutrients varied with evident seasonality: high phosphate and ammonium concentrations during the dry season and enhanced silicate contents during the rainy season. SPM was found similar trend with silicate. During the rainy season, the freshwater discharged from the Keum River Dike seemed to dilute the phosphate and ammonium, but to elevate SPM concentration in the Keum Estuary. In addition, the corresponding variations of SPM contents in the estuarine water affected the seasonal fluctuations of nutrients in the Estuary. The most important source of the nutrients in the estuarine water is the fluvial water. Therefore, the distribution patterns of nutrients in the Estuary are conservative against salinity. Nitrate, nitrite and silicate are conservative through the year. The distribution of phosphate and ammonium on the other hand, display two distinct seasonal patterns: conservative behavior during the dry season and some additive processes during the rainy days. Mass destruction of freshwater phytoplankton in the riverine water is believed to be a major additive source of phosphate in the upper Estuary. Desorption processes of phosphate and ammonium from SPM and organic matter probably contribute extra source of addition. Benthic flux of phosphate and ammonium from the sediment into overlying estuarine water can not be excluded as another source. After the Keum River Dike construction, the concentrations of SPM decreased markedly and their role in controlling of nutrient concentrations in the Estuary has probably diminished. We found low salinity (5~15 psu) within 1 km away from the Dike during the dry season. Therefore we conclude that the only limited area of inner estuary function as a real estuary and the rest part rather be like a bay during the dry season. However, during the rainy season, the entire estuary as the mixing place of freshwater and seawater. Compared to the environmental conditions of the Estuary before the Dike construction, tidal current velocity and turbidity are decreased, but nutrient concentrations and chance of massive algal bloom such as red tide outbreak markedly increased.

  • PDF

The Influence of Nutrients Addition on Phytoplankton Communities Between Spring and Summer Season in Gwangyang Bay, Korea (광양만에서 춘계와 하계 영양염류 첨가가 식물플랑크톤군집의 성장에 미치는 영향)

  • Bae, Si Woo;Kim, Dongseon;choi, Hyun-Woo;Kim, Young Ok;Moon, Chang Ho;Baek, Seung Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2014
  • In order to estimate the effect of nutrients addition for phytoplankton growth and community compositons in spring and summer season, we investigated the abiotic and biotic factors of surface and bottom waters at 20 stations of inner and offshore areas in Gwangyang Bay, Korea. Nutrient additional experiments were also conducted to identify any additional nutrient effects on phytoplankton assemblage using the surface water for the assay. Bacillariophyceae occupied more than 90% of total phytoplankton assembleges. Of these, diatom Eucampia zodiacus and Skeletonema costatum-like species was mainly dominated in spring and summer, respectively. Here, we can offer the season why the two diatom population densities were maintained at high levels in both seasons. First, light transparency of spring season in the euphotic zone was greatly improved in the bay. This improvement is one of important factor as tigger of increase in E. zodiacus population. Second, low salinity and high nutrient sources supplied by Seomjin River discharge are a main cue for strong bottom-up effects on S. costatum-like species during the summer rainy season. Based on the algal bio-assays, although maximum growth rate of phytoplankton communities at inner bay (St.8) were similar to those of outer bay (St.20), half-saturation constant ($K_s$) for phosphate at outer bay was slightly lower than those of inner bay. This implied that adapted cells in low nutrient condition of outer bay may have enough grown even the low phosphate and they also have a competitive advantage against other algal species under low nutrient condition. In particular, efficiency of N (+) addition in summer season was higher compared to control and P added experiments. In the bay, silicon was not a major limiting factor for phytoplankton growth, whereas nitrogen (N) was considered as a limiting factor during spring and summer. Therefore, a sufficient silicate supply form water mixing Si recycled from diatom decomposition and river water is favorable form maintaining diatom ecosystems in Gwangyang Bay.

Optimization for the Process of Ethanol of Persimmon Leaf(Diospyros kaki L. folium) using Response Surface Methodology (반응표면분석법을 이용한 감잎(Diospyros kaki L. folium) 에탄올 추출물의 최적화)

  • Bae, Du-Kyung;Choi, Hee-Jin;Son, Jun-Ho;Park, Mu-Hee;Bae, Jong-Ho;An, Bong-Jeon;Bae, Man-Jong;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.218-224
    • /
    • 2000
  • The efforts were made to optimite ethanol extraction from persimmon leaf with the time of extraction$(1.5{\sim}2.5\;hrs)$, the temperature of extraction$(70{\sim}90^{\circ}C)$, and the concentration of ethanol$(0{\sim}40%)$ as three primary variables together with several functional characteristics of persimmon leaf as reaction variables. The conditions of extraction was best fitted by using response surface methodology through the center synthesis plan, and the optimal conditions of extraction were established. The contents of soluble solid and soluble tannin went up as the concentration of ethanol went up and the temperature of extraction went down, and the turbidity went down as the concentration of ethanol went down. Electron donation ability was hardly affected by the extraction temperature and had the tendency to go up as the concentration of ethanol went up. The inhibitory activity of xanthine oxidase(XOase) had the tendency to go up as both the concentration of ethanol and the temperature of extraction went up. The inhibitory activity of angiotensin converting enzyme(ACE), the significance of which still was not recognized, showed the maximum when the concentration of ethanol was 27%. In result, the optimal conditions of extraction was the extraction time of two hours, the extraction temperature of $75{\sim}81^{\circ}C$, and the ethanol concentration of $33{\sim}35%$.

  • PDF

Various Cultural Factors Associated with Disease Development of Garlic White Rot Caused by Two Species of Sclerotium (마늘 흑색썩음균핵병 발생에 관여하는 여러가지 경종적 요인)

  • Kim, Yong-Ki;Kwon, Mi-Kyung;Shim, Hong-Sik;Kim, Tack-Soo;Yeh, Wan-Hae;Cho, Weon-Dae;Choi, In-Hu;Lee, Seong-Chan;Ko, Sug-Ju;Lee, Yong-Hwan;Lee, Chan-Jung
    • Research in Plant Disease
    • /
    • v.11 no.1
    • /
    • pp.28-34
    • /
    • 2005
  • This study was conducted to investigate the control possibility of garlic white rot causing severe yield losses of Allium species and cultivars using cultural practices such as optimal sowing date and burial depth, and lime application. Inoculum density in infested field soil was investigated at different soil depth, and that on the diseased plant debris was done. Inoculum density and recovery ratio of white rot pathogen of garlic was highly different between two species of Sclerotium cepivorum forming comparatively small sclerotia and Sclerotium sp. forming comparatively large ones. It was confirmed that S. cepivorum formed more sclerotia on bulbs of garlic than S. sp., and sclerotial recovery of S. cepivorum was higher than that of S. sp. Inoculum density of white rot pathogen in the infested field at garlic seeding period ranged from one to thirteen sclerotia per 30 g soil. Inoculum density of white rot pathogen decreased remarkably with increasing soil depth and above 95% of sclerotia were distributed within 5 cm of soil depth. Disease severity of white rot was higher on slightly planted garlics than deeply-planted ones. Garlic seed bulbs infected by white rot pathogens were confirmed to be one of main inoculum sources of white rot in the field and the disease incidences caused by garlic seed transmission showed big differences among garlic varieties. When nine garlic varieties harvested from infested plots were sown in the field, highly susceptible varieties, ‘Wando’, ‘Daeseo’, ‘Namdo’ and ‘Kodang’ showed high disease incidences, whereas other five varieties were not infected at all. It was confirmed that white rot occurred higher on early-sown garlics, before middle October, than on late-sown ones, after late October. Meanwhile, increasing application rate of lime ranged from 100 to 300 g reduced disease severity of white rot.

Isolation and Physicochemical Properties of Rice Starch from Rice Flour using Protease (단백질분해효소에 의한 쌀가루로부터 쌀전분의 분리 및 물리화학적 특성)

  • Kim, ReeJae;Oh, Jiwon;Kim, Hyun-Seok
    • Food Engineering Progress
    • /
    • v.23 no.3
    • /
    • pp.193-199
    • /
    • 2019
  • This study aimed to investigate the impact of protease treatments on the yield of rice starch (RST) from frozen rice flours, and to compare the physicochemical properties of RST by alkaline steeping (control) and enzymatic isolation (E-RST) methods. Although the yield of E-RST, prepared according to conditions designed by the modified 23 complete factorial design, was lower than the control, the opposite trends were observed in its purity. E-RST (RST1, isolated for 8 h at 15℃ with 0.5% protease; RST2, isolated for 24 h at 15℃ with 1.5% protease; RST3, isolated for 24 h at 15℃ with 0.5% protease) with the yields above 50% were selected. Amylose contents did not significantly differ for the control and RST2. Relative to the control, solubilities were higher for all E-RST, but swelling power did not significantly differ for E-RST except for RST1. Although all E-RST revealed higher gelatinization temperatures than the control, the reversed trends were found in the gelatinization enthalpy. The pasting viscosities of all E-RST were lower than those of the control. Consequently, the enzymatic isolation method using protease would be a more time-saving and eco-friendly way of preparing RST than the alkaline steeping method, even though its characteristics are different.