• 제목/요약/키워드: 요오드-황 사이클

검색결과 8건 처리시간 0.02초

황-요오드 열화학 수소체조 공정에서 2 액상 정체 특성 (2 Liquid Phase Purification Characteristics for Sulfur-Iodine Thermochemical Hydrogen Production)

  • 이광진;차광서;강영한;박주식;배기광;김영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.69-72
    • /
    • 2007
  • The objective of this work was to study the properties of purification of two liquid phase for exclusion of impurities in each phase. The experiments for process variables were carried out in the temperature range($H_{2}SO_{4}$ phase: $413{\sim}513$ K, $HI_{x}$ phase: $353{\sim}453$ K) and in the $N_{2}$ flow rate range($H_{2}SO_{4}$, $HI_{x}$ phase: $50{\sim}200$ mL/min). As the results, it is appeared that the principles of $H_{2}SO_{4}$ phase purification was due to stripping, evaporation and reverse bunsen reaction and $HI_{x}$ phase purification was due to stripping and reverse bunsen reaction. In purification of $H_{2}SO_{4}$ phase, the concentration rate of $H_{2}SO_{4}$ phase was controled by temperature but the temperature had few effects on yield of $H_{2}SO_{4}$. In purification of $HI_{x}$ phase, we observed products of side reactions($H_{2}S$, S) over 433 K. The purity of $HI_{x}$ phase was increased with increasing $N_{2}$ flow rate because impurites were decreased with increasing conversion of reverse reaction.

  • PDF

H2SO4-HI-H2O-I2계의 2 액상 분리특성에 관한 연구(I) (The Study on 2 Liquid Separation Characteristics of H2SO4-HI-H2O-I2 System (I))

  • 이태천;정헌도;김태환;배기광
    • 공업화학
    • /
    • 제16권6호
    • /
    • pp.848-852
    • /
    • 2005
  • Iodine-sulfur 사이클의 연속 공정 운전을 위해서는 분젠반응에서 생성되어진 황산과 요오드화수소의 분리와 일정한 조성을 유지시키는 기술이 필요하다. 그러나 황산과 요오드화수소는 황과 황화수소를 생성시키는 부반응이 일어나므로 부반응을 억제하며 두 개의 산을 분리시키는 기술이 요구된다. 따라서 본 연구는 부반응이 최소화되는 조건에서 2 액상 분리에 관한 물의 영향에 관하여 조사하였다. 물 몰분율이 0.86에서 0.91까지 범위에서 2 액상 분리가 일어나고 물의 증가에 따라 황화수소의 생성이 억제되었으나 물아 몰분율이 0.92 이상에서 2 액상 분리 현상은 관찰되지 않았다.

황-요오드 열화학 수소 제조 공정에서 분젠 반응과 상 분리 비고 (The Comparison of Bunsen Reaction With Phase Separation in Sulfur-lodine Thermochemical Hydrogen Production Process)

  • 이광진;안승혁;김영호;박주식;배기광
    • 한국수소및신에너지학회논문집
    • /
    • 제19권2호
    • /
    • pp.111-117
    • /
    • 2008
  • A Bunsen reaction section is a primary stage of Sulfur-iodine thermochemical hydrogen production cycle. This section is important, because it decides the efficiency of next stages. In order to produce hydrogen very efficiently, the characteristics of Bunsen reaction were investigated via two experimental methods. The one is a phase separation of $H_2SO_4-HI-H_2O-I_2$ mixture system, and the other is a direct Bunsen reaction. The characteristics of each method were investigated and compared. As the result of this study, the amount of HI and $I_2$ in $H_2SO_4$ phase via Bunsen reaction was more decreased than that via $H_2SO_4-HI-H_2O-I_2$ mixture system with increasing $I_2$ concentration. However, the amount of $H_2SO_4$ in $HI_x$ phase via Bunsen reaction was remarkably increased with increasing $I_2$ concentration, while that via $H_2SO_4-HI-H_2O-I_2$ mixture system was decreased. On the other hand, the range of initial composition which is able to separate into two liquid phases without $I_2$ solidification was almost alike.

Iodine-Sulfur 수소 제조 공정에서 $H_2SO_4-HI-H_2O-I_2$ 계의 고온 상 분리 (High Temperature Phase Separation of $H_2SO_4-HI-H_2O-I_2$ System In Iodine-Sulfur Hydrogen Production Process)

  • 이동희;이광진;강영한;김영호;박주식;황갑진;배기광
    • 한국수소및신에너지학회논문집
    • /
    • 제17권4호
    • /
    • pp.395-402
    • /
    • 2006
  • Iodine-sulfur(IS) hydrogenation production process consists of three sections, which are so called a Bunsen reaction section, a HI decomposition section and a $H_2SO_4$ decomposition section as a closed cycle. For highly efficient operation of a Bunsen reaction section, we investigated the phase separation characteristics of $H_2SO_4-HI-H_2O-I_2$ system into two liquid phases($H_2SO_4$-rich phase and $HI_x$-rich phase) in the high temperature ranges, mainly from 353 to 393 K, and in the $H_2SO_4/HI/H_2O/I_2$ molar ratio of $1/2/14{\sim}30/0.3{\sim}13.50$. The desired results for the minimization of impurities in each phase were obtained in conditions with the higher temperature and the higher $I_2$ molar composition. On the basis of the distribution of $H_2O$ to each phase, it is appeared that the affinity between $HI_x$ and $H_2O$ was more superior to that between $H_2SO_4$ and $H_2O$.

황-요오드 수소 제조 공정의 분젠 반응 부분에서 $O_2$의 역할 (The Role of Oxygen in Bunsen Reaction Section of Sulfur-Iodine Hydrogen Production Process)

  • 홍동우;김효섭;김영호;박주식;배기광
    • 한국수소및신에너지학회논문집
    • /
    • 제21권4호
    • /
    • pp.278-285
    • /
    • 2010
  • The Sulfur-Iodine (SI) thermochemical hydrogen production process of a closed cycle consists of three sections, which are so called the Bunsen reaction section, the $H_2SO_4$ decomposition section and the HI decomposition section. To identify the role of oxygen that can be supplied to the Bunsen reaction section via the $H_2SO_4$ decomposition section, Bunsen reactions with a $SO_2,\;SO_2-O_2$ mixture and $SO_2-N_2$ mixture as feed gases were carried out using a stirred reactor in the presence of $I_2/H_2O$ mixture. As the results, the amounts of $I_2$ unreacted under the feed of mixture gases were higher than those under the feed of $SO_2$ gas only, and the amount of HI produced was relatively decreased. The results of Bunsen reaction using $SO_2-O_2$ mixture were similar to those using $SO_2-N_2$ mixture. It may be concluded that an oxygen in $SO_2-O_2$ mixture has a role as a carrier gas like a nitrogen in $SO_2-N_2$ mixture. The effects of oxygen were decreased with increasing temperature and decreasing oxygen content in $SO_2-O_2$ mixture.

황-요오드 수소 생산 공정의 분젠 반응 부분에서 부반응 제어 (The Control of Side Reactions in Bunsen Reaction Section of Sulfur-Iodine Hydrogen Production Process)

  • 이광진;홍동우;김영호;박주식;배기광
    • 한국수소및신에너지학회논문집
    • /
    • 제19권6호
    • /
    • pp.490-497
    • /
    • 2008
  • For continuous operation of the sulfur-iodine(SI) thermochemical cycle, which is expected practical method for massive hydrogen production, suggesting operation conditions at steady state is very important. Especially, in the Bunsen reaction section, the Bunsen reaction as well as side reactions is occurring simultaneously. Therefore, we studied on the relation between the variation of compositions in product solution and side reactions. The experiments for Bunsen reaction were carried out in the temperature range, from 268 to 353 K, and in the $I_2/H_2O$ molar ratio of $0.094{\sim}0.297$ under a continuous flow of $SO_2$ gas. As the result, sulfur formed predominantly with increasing temperature and decreasing $I_2/H_2O$ molar ratios. The molar ratios of $H_2O/H_2SO_4$ and $HI/H_2SO_4$ in global system were decreased as the more side reaction occurred. A side reactions did not appear at $I_2/H_2O$ molar ratios, saturated with $I_2$, irrespective of the temperature change. We concluded that it caused by the increasing stability of an $I_{2x}H^+$ complex and a steric hindrance with increasing $I_2/HI$ molar ratios.

황-요오드 수소 제조 공정에서 저온 분젠 반응의 상 분리 특성 (Phase Separation Characteristics of Low Temperature Bunsen Reactions In Sulfur-Iodine Hydrogen Production Process)

  • 한상진;이광진;김효섭;김영호;박주식;배기광;이종규
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.424-431
    • /
    • 2011
  • The Sulfur-Iodine(SI) thermochemical hydrogen production process consists of three sections, which are so called the Bunsen reaction section, the $H_2SO_4$ decomposition section and the HI decomposition section. In order to identify the phase separation characteristics in the reaction conditions with the high solubility of $SO_2$, we conducted the Bunsen reaction at the low temperatures, ranging from 283 to 298K, with the $I_2/H_2O$ molar ratios of 2.5/16.0 and 3.5/16.0. The molar ratios of HI/$H_2SO_4$ products obtained from low temperature Bunsen reactions were ca. 2, indicating that there were no side reactions. The amount of reacted $SO_2$ was increased with decreasing the temperature, while the amounts of unreacted $I_2$ and $H_2O$ were decreased. In the phase separation of the products, the amount of a $H_2SO_4$ impurity in $HI_x$ phase was increased with decreasing the temperature, though the temperature has little affected on HI and $I_2$ impurities in $H_2SO_4$ phase.

요오드-황 열화학 수소 제조를 위한 분젠 반응 공정 연구 (The Study on Bunsen Reaction Process for Iodine-Sulfur Thermochemical Hydrogen Production)

  • 강영한;류재춘;박주식;황갑진;이상호;배기광;김영호
    • Korean Chemical Engineering Research
    • /
    • 제44권4호
    • /
    • pp.410-416
    • /
    • 2006
  • 원자력 열을 이용한 요오드-황 열화학 수소 제조 사이클에서 분젠 공정 부분의 고효율 운전을 목적으로 2 액상(황산 상과 $HI_x$ 상)으로의 분리 및 $H_2O$의 분배를 위한 $H_2SO_4-HI-H_2-O-I_2$ 혼합 계의 공정 특성을 연구하였다. 공정 변수 실험은 298~353 K의 온도 범위와 $H_2SO_4/HI/H_2O/I_2=1/2/14{\sim}20/0.5{\sim}8.0$의 몰 조성 범위에서 수행했다. 결과로서, $SO_2-I_2-H_2O$ 분젠 반응계를 위하여 계산에 의해 2 액상으로 분리되는 분리점 및 포화점의 사이의 범위를 결정하였다. 각상내 불순물들(황산 상내 HI 및 $I_2$ 그리고 $HI_x$ 상내 $H_2SO_4$)이 최소화되는 최적의 결과는 가장 높은 온도인 353 K와 가장 높은 $I_2$ 몰 농도에서 얻을 수 있었다. 이 조건에서 황산 상을 위한 $HI/H_2SO_4$$HI_x$ 상을 위한 $H_2SO_4/HI_x$ 몰 비율은 각각 0.024와 0.028였다. 각 상으로 $H_2O$의 분배를 위하여 $HI_x$$H_2O$ 사이의 친화력이 $H_2SO_4$$H_2O$ 사이의 친화력보다 우세한 것으로 나타났으며, $HI_x$$H_2O$ 사이의 친화력은 온도 증가에 따라 감소하고 $I_2$ 몰 농도에 따라 증가했다.