• 제목/요약/키워드: 요약 데이터셋

검색결과 34건 처리시간 0.022초

판결문 자동요약을 위한 학습 데이터의 품질 개선방안 (Method to improve the Quality of Training Data for Automatic Summarization of Judgments)

  • 고상영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.461-464
    • /
    • 2022
  • 법원도서관이 발간하는 판례공보를 기반으로 판결문 자동요약을 위한 학습 데이터들이 구축되고 있다. 그런데 판결문 요약에서는 뉴스 요약과는 달리 추출요약과 생성요약 방식이 함께 사용되는 특수성이 있고, 이러한 특수성 때문에 현재 판결문 요약 데이터셋이 요약 프로그램의 성능 향상을 이끌지 못하고 있다고 생각된다. 따라서 법률가들이 판결문을 요약하는 방식을 반영하여, 추출요약 방식으로 작성된 판결요지와 생성요약 방식으로 작성된 판결요지를 분리해서 요약 데이터셋을 만들 필요가 있다. 추출요약과 생성요약에 관한 데이터셋을 따로 구축하기 위해서는 판례공보의 판결요지를 추출요약과 생성요약으로 분류하는 작업이 필요한데, 감성 분석에 사용되는 알고리즘이 판결요지의 분류 작업에 응용될 수 있다는 것을 실험 결과로 알 수 있었다.

  • PDF

대화 요약 생성을 위한 한국어 방송 대본 데이터셋 (KMSS: Korean Media Script Dataset for Dialogue Summarization )

  • 김봉수;전혜진;전현규;정혜인;장정훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.198-204
    • /
    • 2022
  • 대화 요약은 다중 발화자와 발화문으로 이루어진 멀티턴 형식의 문서에 대해 핵심내용을 추출하거나 생성하는 태스크이다. 대화 요약 모델은 추천, 대화 시스템 등에 콘텐츠, 서비스 기록에 대한 분석을 제공하는 데 유용하다. 하지만 모델 구축에 필요한 한국어 대화 요약 데이터셋에 대한 연구는 부족한 실정이다. 본 논문에서는 생성 기반 대화 요약을 위한 데이터셋을 제안한다. 이를 위해 국내 방송사의 대용량 콘텐츠로 부터 원천 데이터를 수집하고, 주석자가 수작업으로 레이블링 하였다. 구축된 데이터셋 규모는 6개 카테고리에 대해 약 100K이며, 요약문은 단문장, 세문장, 2할문장으로 구분되어 레이블링 되었다. 또한 본 논문에서는 데이터의 특성을 내재화하고 통제할 수 있도록 대화 요약 레이블링 가이드를 제안한다. 이를 기준으로 모델 적합성 검증에 사용될 디코딩 모델 구조를 선정한다. 실험을 통해 구축된 데이터의 몇가지 특성을 조명하고, 후속 연구를 위한 벤치마크 성능을 제시한다. 데이터와 모델은 aihub.or.kr에 배포 되었다.

  • PDF

요점만 남긴 신문 기사: 한국어 표제 형식 문서 요약 데이터셋 (News in a Nutshell: A Korean Headline-Style Summarization Dataset)

  • 권홍석;고병현;박주홍;이명지;오재영;허담;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.47-53
    • /
    • 2020
  • 문서 요약은 주어진 문서에서 핵심 내용만을 남긴 간결한 요약문을 생성하는 일로 자연어처리의 주요 분야 중 하나이다. 최근 방대한 데이터로부터 심층 신경망 표상을 학습하는 기술의 발전으로 문서 요약 기술이 급진적으로 진화했다. 이러한 데이터 기반 접근 방식에는 모델의 학습을 위한 양질의 데이터가 필요하다. 그러나 한국어와 같이 잘 알려지지 않은 언어에 대해서는 데이터의 획득이 쉽지 않고, 이를 구축하는 것은 많은 시간과 비용을 필요로 한다. 본 논문에서는 한국어 문서 요약을 위한 대용량 데이터셋을 소개한다. 데이터셋은 206,822개의 기사-요약 쌍으로 구성되며, 요약은 표제 형식의 여러 문장으로 되어 있다. 우리는 구축한 학습 데이터의 적합성을 검증하기 위해 수동 평가 및 여러 주요 속성에 대해 분석하고, 기존 여러 문서 요약 시스템에 학습 및 평가하여 향후 문서 요약 벤치마크 데이터셋으로써 기준선을 제시한다. 데이터셋은 https://github.com/hong8e/KHS.git의 스크립트를 통해 내려받을 수 있다.

  • PDF

복사-메커니즘과 추론 단계의 페널티를 이용한 Copy-Transformer 기반 문서 생성 요약 (Copy-Transformer model using Copy-Mechanism and Inference Penalty for Document Abstractive Summarization)

  • 전동현;강인호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.301-306
    • /
    • 2019
  • 문서 생성 요약은 최근 딥러닝을 이용한 end-to-end 시스템을 통해 유망한 결과들을 보여주고 있어 연구가 활발히 진행되고 있는 자연어 처리 분야 중 하나이다. 하지만 문서 생성 요약 모델을 구성하기 위해서는 대량의 본문과 요약문 쌍의 데이터 셋이 필요한데, 이를 구축하기가 쉽지 않다. 따라서 본 논문에서는 정교한 뉴스 기사 요약 데이터 셋을 기계적으로 구축하는 방법을 제안한다. 또한 딥러닝 기반의 생성 요약은 입력 문서와 다른 정보를 생성하거나, 또는 같은 단어를 반복하여 생성하는 문제점들이 존재한다. 이를 해결하기 위해 요약문을 생성할 때 입력 문서의 내용을 인용하는 복사-메커니즘과, 추론 단계에서 단어 반복을 직접적으로 제어하는 페널티를 사용하면 상대적으로 안정적인 문장이 생성될 수 있다. 그리고 Transformer 모델은 순환 신경망 모델보다 요약문 생성 과정에서 시퀀스 길이가 긴 본문의 정보를 적절히 인코딩하여 줄 수 있는 모델이다. 따라서 본 논문에서는 복사-메커니즘과 추론 단계의 페널티를 이용한 Copy-Transformer 모델을 한국어 문서 생성 요약 데이터에 적용하였다. 네이버 지식iN 질문 요약 데이터 셋과 뉴스 기사 요약 데이터 셋 상에서 실험한 결과, 제안한 모델을 이용한 생성 요약이 비교 모델들 대비 가장 좋은 성능을 보이고 양질의 요약을 생성하는 것을 확인하였다.

  • PDF

문서 요약 데이터셋을 이용한 생성형 근거 추론 방법 (Generative Evidence Inference Method using Document Summarization Dataset)

  • 장예진;장영진;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.137-140
    • /
    • 2023
  • 자연어처리는 인공지능 발전과 함께 주목받는 분야로 컴퓨터가 인간의 언어를 이해하게 하는 기술이다. 그러나 많은 인공지능 모델은 블랙박스처럼 동작하여 그 원리를 해석하거나 이해하기 힘들다는 문제점이 있다. 이 문제를 해결하기 위해 설명 가능한 인공지능의 중요성이 강조되고 있으며, 활발히 연구되고 있다. 연구 초기에는 모델의 예측에 큰 영향을 끼치는 단어나 절을 근거로 추출했지만 문제 해결을 위한 단서 수준에 그쳤으며, 이후 문장 단위의 근거로 확장된 연구가 수행되었다. 하지만 문서 내에 서로 떨어져 있는 근거 문장 사이에 누락된 문맥 정보로 인하여 이해에 어려움을 줄 수 있다. 따라서 본 논문에서는 사람에게 보다 이해하기 쉬운 근거를 제공하기 위한 생성형 기반의 근거 추론 연구를 수행하고자 한다. 높은 수준의 자연어 이해 능력이 필요한 문서 요약 데이터셋을 활용하여 근거를 생성하고자 하며, 실험을 통해 일부 기계독해 데이터 샘플에서 예측에 대한 적절한 근거를 제공하는 것을 확인했다.

  • PDF

딥러닝 텍스트 요약 모델의 데이터 편향 문제 해결을 위한 학습 기법 (Training Techniques for Data Bias Problem on Deep Learning Text Summarization)

  • 조준희;오하영
    • 한국정보통신학회논문지
    • /
    • 제26권7호
    • /
    • pp.949-955
    • /
    • 2022
  • 일반적인 딥러닝 기반의 텍스트 요약 모델은 데이터셋으로부터 자유롭지 않다. 예를 들어 뉴스 데이터셋으로 학습한 요약 모델은 커뮤니티 글, 논문 등의 종류가 다른 글에서 핵심을 제대로 요약해내지 못한다. 본 연구는 이러한 현상을 '데이터 편향 문제'라 정의하고 이를 해결할 수 있는 두 가지 학습 기법을 제안한다. 첫 번째는 고유명사를 마스킹하는 '고유명사 마스킹'이고 두 번째는 텍스트의 길이를 임의로 늘이거나 줄이는 '길이 변화'이다. 또한, 실제 실험을 진행하여 제안 기법이 데이터 편향 문제 해결에 효과적임을 확인하며 향후 발전 방향을 제시한다. 본 연구의 기여는 다음과 같다. 1) 데이터 편향 문제를 정의하고 수치화했다. 2) 요약 데이터의 특징을 바탕으로 학습 기법을 제안하고 실제 실험을 진행했다. 3) 제안 기법은 모든 요약 모델에 적용할 수 있고 구현이 어렵지 않아 실용성이 뛰어나다.

Pointer-Generator Networks를 이용한 cQA 시스템 질문 요약 (Pointer-Generator Networks for Community Question Answering Summarization)

  • 김원우;김선훈;장헌석;강인호;박광현
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.126-131
    • /
    • 2018
  • cQA(Community-based Question Answering) 시스템은 사용자들이 질문을 남기고 답변을 작성하는 시스템이다. cQA는 사용자의 편의를 위해 기존의 축적된 질문을 검색하거나 카테고리로 분류하는 기능을 제공한다. 질문의 길이가 길 경우 검색이나 카테고리 분류의 정확도가 떨어지는 한계가 있는데, 이를 극복하기 위해 cQA 질문을 요약하는 모델을 구축할 필요가 있다. 하지만 이러한 모델을 구축하려면 대량의 요약 데이터를 확보해야 하는 어려움이 존재한다. 본 논문에서는 이러한 어려움을 극복하기 위해 cQA의 질문 제목, 본문으로 데이터를 확보하고 필터링을 통해 요약 데이터 셋을 만들었다. 또한 본문의 대표 단어를 이용하여 추상 요약을 하기 위해 딥러닝 기반의 Pointer-generator model을 사용하였다. 실험 결과, 기존의 추출 요약 방식보다 딥러닝 기반의 추상 요약 방식의 성능이 더 좋았으며 Pointer-generator model이 보다 좋은 성능을 보였다.

  • PDF

Copy Mechanism과 Input Feeding을 이용한 End-to-End 한국어 문서요약 (End-to-end Document Summarization using Copy Mechanism and Input Feeding)

  • 최경호;이창기
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.56-61
    • /
    • 2016
  • 본 논문에서는 Sequence-to-sequence 모델을 생성요약의 방법으로 한국어 문서요약에 적용하였으며, copy mechanism과 input feeding을 적용한 RNN search 모델을 사용하여 시스템의 성능을 높였다. 인터넷 신문기사를 수집하여 구축한 한국어 문서요약 데이터 셋(train set 30291 문서, development set 3786 문서, test set 3705문서)으로 실험한 결과, input feeding과 copy mechanism을 포함한 모델이 형태소 기준으로 ROUGE-1 35.92, ROUGE-2 15.37, ROUGE-L 29.45로 가장 높은 성능을 보였다.

  • PDF

도메인 적응 사전 훈련 (Domain-Adaptive Pre-training, DAPT) 한국어 문서 요약 (Domain-Adaptive Pre-training for Korean Document Summarization)

  • 장형국;장현철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.843-845
    • /
    • 2024
  • 도메인 적응 사전 훈련(Domain-Adaptive Pre-training, DAPT)을 활용한 한국어 문서 요약 연구에서는 특정 도메인의 문서에 대한 이해도와 요약 성능을 향상시키기 위해 DAPT 기법을 적용했다. 이 연구는 사전 훈련된 언어 모델이 일반적인 언어 이해 능력을 넘어 특정 도메인에 최적화된 성능을 발휘할 수 있도록 도메인 특화 데이터셋을 사용하여 추가적인 사전 훈련을 진행한다. 구체적으로, 의료, 법률, 기술 등 다양한 도메인에서 수집한 한국어 텍스트 데이터를 이용하여 모델을 미세 조정하며, 이를 통해 얻은 모델은 도메인에 특화된 용어와 문맥을 효과적으로 처리할 수 있음을 보여준다. 성능 평가에서는 기존 사전 훈련 모델과 DAPT를 적용한 모델을 비교하여 DAPT의 효과를 검증했다. 연구 결과, DAPT를 적용한 모델은 도메인 특화 문서 요약 작업에서 성능 향상을 보였으며, 이는 실제 도메인별 활용에서도 유용할 것으로 기대된다.

사전학습 언어 모델을 활용한 트랜스포머 기반 텍스트 요약 (Transformer-based Text Summarization Using Pre-trained Language Model)

  • 송의석;김무성;이유린;안현철;김남규
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.395-398
    • /
    • 2021
  • 최근 방대한 양의 텍스트 정보가 인터넷에 유통되면서 정보의 핵심 내용을 파악하기가 더욱 어려워졌으며, 이로 인해 자동으로 텍스트를 요약하려는 연구가 활발하게 이루어지고 있다. 텍스트 자동 요약을 위한 다양한 기법 중 특히 트랜스포머(Transformer) 기반의 모델은 추상 요약(Abstractive Summarization) 과제에서 매우 우수한 성능을 보이며, 해당 분야의 SOTA(State of the Art)를 달성하고 있다. 하지만 트랜스포머 모델은 매우 많은 수의 매개변수들(Parameters)로 구성되어 있어서, 충분한 양의 데이터가 확보되지 않으면 이들 매개변수에 대한 충분한 학습이 이루어지지 않아서 양질의 요약문을 생성하기 어렵다는 한계를 갖는다. 이러한 한계를 극복하기 위해 본 연구는 소량의 데이터가 주어진 환경에서도 양질의 요약문을 생성할 수 있는 문서 요약 방법론을 제안한다. 구체적으로 제안 방법론은 한국어 사전학습 언어 모델인 KoBERT의 임베딩 행렬을 트랜스포머 모델에 적용하는 방식으로 문서 요약을 수행하며, 제안 방법론의 우수성은 Dacon 한국어 문서 생성 요약 데이터셋에 대한 실험을 통해 ROUGE 지표를 기준으로 평가하였다.

  • PDF