• 제목/요약/키워드: 요약문

검색결과 256건 처리시간 0.024초

대화문 재구조화를 통한 한국어 대화문 요약 (Summarization of Korean Dialogues through Dialogue Restructuring)

  • 김은희;임명진;신주현
    • 스마트미디어저널
    • /
    • 제12권11호
    • /
    • pp.77-85
    • /
    • 2023
  • COVID-19 이후 온라인을 통한 소통이 증가하여 다양한 플랫폼을 기반으로 소통을 위한 대화 텍스트 데이터가 대량으로 축적되고 있다. 텍스트 데이터로부터 유의미한 정보를 추출하기 위한 텍스트 요약에 대한 중요성이 더욱 증가함에 따라 딥러닝을 활용한 추상 요약 연구가 활발하게 이루어지고 있다. 그러나 대화 데이터는 뉴스 기사와 같은 정형화된 텍스트에 비해 누락 및 변형이 많아 대화 상황을 다양한 관점에서 고려해야 하는 특이성이 있다. 특히 어휘 생략과 동시에 내용과 관련 없는 표현 요소들이 대화의 내용을 요약하는 데 방해가 된다. 그러므로 본 연구에서는 한국어 대화 데이터의 특성을 고려하여 발화문을 재구조화하고 KoBART 기반의 사전학습된 텍스트 요약 모델을 파인 튜닝후, 요약문에서 중복 요소를 제거하는 정제 작업을 통해 대화 데이터 요약 성능을 향상시키고자 한다. 발화문을 재구조화하는 방법으로는 발화 순서에 따라 재구조화는 방법과 중심 발화자를 기준으로 재구조화하는 방법을 결합하였다. 대화문 재구조화 방법을 적용한 결과, Rouge-1 점수가 4 정도 향상되었다. 본 연구의 대화 특성을 고려한 재구조화 방법이 한국어 대화 요약 성능 향상에 유의미함을 입증하였다.

어휘 사전에 없는 단어를 포함한 문서의 요약문 생성 방법 (Summary Generation of a Document with Out-of-vocabulary Words)

  • 이태석;강승식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.530-531
    • /
    • 2018
  • 문서 자동 요약은 주요 단어 또는 문장을 추출하거나 문장을 생성하는 방식으로 요약한다. 최근 연구에서는 대량의 문서를 딥러닝하여 요약문 자체를 생성하는 방식으로 발전하고 있다. 추출 요약이나 생성 요약 모두 핵심 단어를 인식하는 것이 매우 중요하다. 학습할 때 각 단어가 문장에서 출현한 패턴으로부터 의미를 인식하고 단어를 선별하여 요약한다. 결국 기계학습에서는 학습 문서에 출현한 어휘만으로 요약을 한다. 따라서 학습 문서에 출현하지 않았던 어휘가 포함된 새로운 문서의 요약에서 기존 모델이 잘 작동하기 어려운 문제가 있다. 본 논문에서는 학습단계에서 출현하지 않은 단어까지도 중요성을 인식하고 요약문을 생성할 수 있는 신경망 모델을 제안하였다.

  • PDF

비디오의 오디오 정보 요약 기법에 관한 연구 (Investigating the Efficient Method for Constructing Audio Surrogates of Digital Video Data)

  • 김현희
    • 정보관리학회지
    • /
    • 제26권3호
    • /
    • pp.169-188
    • /
    • 2009
  • 본 연구는 비디오의 오디오 정보를 추출하여 자동으로 요약하는 알고리즘을 설계하고, 제안된 알고리즘에 의해서 구성한 오디오 요약의 품질을 평가하여 효율적인 비디오 요약의 구현 방안을 제안하였다. 구체적인 연구 결과를 살펴보면 다음과 같다. 먼저, 제안 오디오 요약의 품질이 위치 기반 오디오 요약의 품질 보다 내재적 평가에서 더 우수하게 나타났다. 이용자 평가(외재적 평가)의 요약문 정확도에서는 제안 요약문이 위치 기반 요약문 보다 더 우수한 것으로 나타났지만, 항목 선택에서는 이 두 요약문간의 성능 차이는 없는 것으로 나타났다. 이외에 비디오 브라우징을 위한 오디오 요약에 대한 이용자 만족도를 조사하였다. 끝으로 이러한 조사 결과를 기초로 하여 제안된 오디오 요약 기법을 인터넷이나 디지털 도서관에 활용하는 방안들을 제시하였다.

복사-메커니즘과 추론 단계의 페널티를 이용한 Copy-Transformer 기반 문서 생성 요약 (Copy-Transformer model using Copy-Mechanism and Inference Penalty for Document Abstractive Summarization)

  • 전동현;강인호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.301-306
    • /
    • 2019
  • 문서 생성 요약은 최근 딥러닝을 이용한 end-to-end 시스템을 통해 유망한 결과들을 보여주고 있어 연구가 활발히 진행되고 있는 자연어 처리 분야 중 하나이다. 하지만 문서 생성 요약 모델을 구성하기 위해서는 대량의 본문과 요약문 쌍의 데이터 셋이 필요한데, 이를 구축하기가 쉽지 않다. 따라서 본 논문에서는 정교한 뉴스 기사 요약 데이터 셋을 기계적으로 구축하는 방법을 제안한다. 또한 딥러닝 기반의 생성 요약은 입력 문서와 다른 정보를 생성하거나, 또는 같은 단어를 반복하여 생성하는 문제점들이 존재한다. 이를 해결하기 위해 요약문을 생성할 때 입력 문서의 내용을 인용하는 복사-메커니즘과, 추론 단계에서 단어 반복을 직접적으로 제어하는 페널티를 사용하면 상대적으로 안정적인 문장이 생성될 수 있다. 그리고 Transformer 모델은 순환 신경망 모델보다 요약문 생성 과정에서 시퀀스 길이가 긴 본문의 정보를 적절히 인코딩하여 줄 수 있는 모델이다. 따라서 본 논문에서는 복사-메커니즘과 추론 단계의 페널티를 이용한 Copy-Transformer 모델을 한국어 문서 생성 요약 데이터에 적용하였다. 네이버 지식iN 질문 요약 데이터 셋과 뉴스 기사 요약 데이터 셋 상에서 실험한 결과, 제안한 모델을 이용한 생성 요약이 비교 모델들 대비 가장 좋은 성능을 보이고 양질의 요약을 생성하는 것을 확인하였다.

  • PDF

주제어구 추출과 질의어 기반 요약을 이용한 문서 요약 (Document Summarization using Topic Phrase Extraction and Query-based Summarization)

  • 한광록;오삼권;임기욱
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권4호
    • /
    • pp.488-497
    • /
    • 2004
  • 본 논문에서는 추출 요약 방식과 질의어 기반의 요약 방식을 혼합한 문서 요약 방법에 관해서 기술한다. 학습문서를 이용해 주제어구 추출을 위한 학습 모델을 만든다. 학습 알고리즘은 Naive Bayesian, 결정트리, Supported Vector Machine을 이용한다. 구축된 모델을 이용하여 입력 문서로부터 주제어구 리스트를 자동으로 추출한다. 추출된 주제어구들을 질의어로 하여 이들의 국부적 유사도에 의한 기여도를 계산함으로써 요약문을 추출한다. 본 논문에서는 주제어구가 원문 요약에 미치는 영향과, 몇 개의 주제어구 추출이 문서 요약에 적당한지를 실험하였다. 추출된 요약문과 수동으로 추출한 요약문을 비교하여 결과를 평가하였으며, 객관적인 성능 평가를 위하여 MS-Word에 포함된 문서 요약 기능과 실험 결과를 비교하였다.

문서 구조 정보를 이용한 확률 모델 기반 자동요약 시스템 (An Automatic Summarization System Based On a Probabilistic Model Using Document Structure Information)

  • 장동현;맹성현
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1997년도 제9회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.15-22
    • /
    • 1997
  • 인터넷과 정보 서비스 기술의 발달로 일반 대중에게 제공되는 정보의 양은 기하급수적으로 증가하고 있는 추세지만 사용자가 원하는 정보를 얻기는 더욱 어려워지고 있으며, 필요한 정보를 찾은 경우에도 그 양이 많기 때문에 전체적인 내용을 파악하는 데 많은 시간을 소비하게 된다. 이러한 문제를 해결하고자 본 연구에서는 통계적 모델을 사용하여 문서로부터 문장을 추출한 후 요약문을 작성하여 사용자에게 제시하는 시스템을 개발하였다. 문서 요약 시스템의 구축을 위하여 사용된 방법은 문서 집합으로부터 중요 문장을 추출한 후 이로부터 요약문에 나타날 수 있는 특성(feature)과 중요 단어를 학습하여 학습된 내용을 이용하여 요약문을 하는 방법이다. 시스템 개발 및 평가를 위해 사용된 문서는 정보 과학 분야의 논문 모음이며 이를 학습 데이터와 실험 데이터로 구분한 후 학습 데이터로부터 필요한 정보를 얻고 실험 데이터로 평가하였다.

  • PDF

개체명 기반 질문-답변 검사를 통한 요약문 사실관계 확인 (Factual consistency checker through a question-answer test based on the named entity)

  • 정지수;류휘정;장두성;정이우;정상근
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.112-117
    • /
    • 2021
  • 기계 학습을 활용하여 요약문을 생성했을 경우, 해당 요약문의 정확도를 측정할 수 있는 도구는 필수적이다. 원문에 대한 요약문의 사실관계 일관성의 파악을 위해 개체명 유사도, 기계 독해를 이용한 질문-답변 생성을 활용한 방법이 시도되었으나, 충분한 데이터 확보가 필요하거나 정확도가 부족하였다. 본 논문은 딥러닝 모델을 기반한 개체명 인식기와 질문-답변쌍 정확도 측정기를 활용하여 생성, 필터링한 질문-답변 쌍에 대해 일치도를 점수화하는 방법을 제안하였다. 이러한 기계적 사실관계 확인 점수와 사람의 평가 점수의 분포를 비교하여 방법의 타당성을 입증하였다.

  • PDF

질의응답을 위한 복수문서 요약에 관한 실험적 연구 (An Experimental Study on Multi-Document Summarization for Question Answering)

  • 최상희;정영미
    • 정보관리학회지
    • /
    • 제21권3호
    • /
    • pp.289-303
    • /
    • 2004
  • 이 연구에서는 이용자가 여러 곳에 분산되어 있는 문서들을 일일이 보지 않고 하나의 요약문에서 쉽게 질의에 맞는 답을 찾을 수 있는 가장 효율적인 방안을 제시하고자 하였다. 이를 위해, 클러스터링 기법, 단락확장 기법, 두 기법의 특성을 반영한 혼합 기법 등 세 가지 복수문서 요약 기법의 성능을 평가하는 실험을 수행하였다. 요약기법 평가 기준으로는 요약 정확률과 요약문내 정보 중복도를 적용하였다. 실험결과 이용자 질의에 따라 여러 문서를 요약하는 최적 기법으로 문장검색을 기반으로 한 순차적 단락확장 기법을 제안하였다. 순차적 단락확장은 특히, 용약의 대상이 되는 문서가 대용량인 환경에서 정확한 정보를 찾아 요약문을 생성하는 성능이 가장 우수한 것으로 나타났다.

요약문 생성을 위한 중간 개념 표현 (Intermediate Concept Representation for Automatic Summary)

  • 서연경;노태길;이상조
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.355-357
    • /
    • 2001
  • 사건, 사고 관련 기사의 요약은 단순히 원문이 무엇을 말하는 가를 지시하는 것보다 가능한 요지를 판독하면서 필요한 정보를 누락시키지 않고 표현할 수 있는 것이 바람직하다. 이를 위하여 본 논문에서는 사건, 사고 관련 기사의 자동 요약문 생성을 위한 중간 개념 표현 방법을 제안한다. 단락 자동 구분을 통한 중요 문장 추출을 거쳐 각 단락의 중심문장을 파악하고, 단락내의 정보들을 의미 파악된 중심 문장에 추가, 병합하여 단락의 내용을 대표하는 Paragraph Representation Structure(PRS)를 생성한다. 이들은 통합과정을 거쳐 하나의 Unified Representation Structure(URS)로 만들어지며, 이것은 중간 개념 표현으로 다국어 자동 요약문 생성을 위한 기반이 될 수 있다. 본 연구에 이용한 코퍼스는 비행기, 선박, 차량, 열차 사고와 화제 폭발 및 사건 관련 신문 기사를 대상으로 한다.

  • PDF

개체명 문맥의미표현 학습을 통한 기계 요약의 사실 불일치 교정 (Learning Contextual Meaning Representations of Named Entities for Correcting Factual Inconsistent Summary)

  • 박준모;노윤석;박세영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.54-59
    • /
    • 2020
  • 사실 불일치 교정은 기계 요약 시스템이 요약한 결과를 실제 사실과 일치하도록 만드는 작업이다. 실제 요약 생성연구에서 가장 공통적인 문제점은 요약을 생성할 때 잘못된 사실을 생성하는 것이다. 이는 요약 모델이 실제 서비스로 상용화 하는데 큰 걸림돌이 되는 부분 중 하나이다. 본 논문에서는 원문으로부터 개체명을 가져와 사실과 일치하는 문장으로 고치는 방법을 제안한다. 이를 위해서 언어 모델이 개체명에 대한 문맥적 표현을 잘 생성할 수 있도록 학습시킨다. 그리고 학습된 모델을 이용하여 원문과 요약문에 등장한 개체명들의 문맥적 표현 비교를 통해 적절한 단어로 교체함으로써 요약문의 사실 불일치를 해소한다. 제안 모델을 평가하기 위해 추상 요약 데이터를 이용해 학습데이터를 만들어 학습하고, 실제 시나리오에서 적용가능성을 검증하기 위해 모델이 요약한 요약문을 이용해 실험을 수행했다. 실험 결과, 자동 평가와 사람 평가에서 제안 모델이 비교 모델보다 높은 성능을 보여주었다.

  • PDF