• Title/Summary/Keyword: 요동하는 질량

Search Result 5, Processing Time 0.079 seconds

THE CAUSTICS AROUND A LOCAL DENSITY PERTURBED REGION IN REDSHIFT SPACE AND THEIR IMPLICATIONS TO RICH CLUSTERS OF GALAXIES (적색편이 공간에서 국부 요동지역 주변의 초면과 은하단에 응용)

  • 송두종
    • Journal of Astronomy and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.163-188
    • /
    • 1993
  • On the framework of Tolman spacetime model, the caustics around a local perturbed region in redshift is due to the local expansion rate induced by a local density inhomogeneity in real space. We have compared the caustics in redshift space, which are analytically obtained, with the observed redshift-distance patterns of galaxies which are belonging to Coma and Perseus clusters. For the Abell density distribution model and polytropic density profiles which are well-fitting the optical and X-ray observations, respectively, the size of caustics which is defined by "turnaround radius" of a local density perturbed region should give constraints on the sizes and masses of rich clusters and give also a clue to understand the state of hot X-ray emitting gas.

  • PDF

Development of Human Body Vibration Model Including Wobbling Mass (Wobbling Mass를 고려한 인체 진동 모텔의 개발)

  • 김영은;백광현;최준희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.193-200
    • /
    • 2002
  • Simple spring-damper-mass models have been widely used to investigate whole-body vortical biodynamic response characteristics of the seated vehicle driver. Most previous models have not considered the effect of wobbling masses; i.e. heart, lungs, liver, intestine, etc. In this study, 4 -DOF seated driver model including one non-rigid mass representing wobbling visceral mass, 5-DOF model including intestine, and 10-DOF model including five lumbar vertebral masses were proposed. The model parameters were identified by a combinatorial optimization technique. simulated annealing method. The objective function was chosen as the sum of error between model response of seat-to-head transmissibility and driving point mechanical impedance and those of experimental data for subjects seated erect without backrest support. The model response showed a good agreement with the experimental response characteristics. Using a 10-DOF model, calculated resonance frequency of lumbar spine at 4Hz was matched well with experimental results of Panjabi et al.

Experimental Evaluation on the Vibration Control Effect of Tuned Liquid Damper with Embossment (벽면 요철형 동조액체댐퍼의 진동제어성능에 관한 실험적 평가)

  • Ju, Young Kyu;Kim, Dae Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.765-772
    • /
    • 2002
  • Many researchers have studied several vibration control devices such as TMD, TLD, and VED to reduce the acceleration level for tall buildings. Advantages of TLD (tuned liquid damper) include easy installation, low cost, and less maintenance. However, the dynamic characteristics of TLD must be verified by experiment and analysis due to the difficulties in evaluating the characteristics of water sloshing. In this study, free vibration and dynamic excitation experiments of structure with TLD were conducted to verify vibration control force of the proposed TLD for high-rise building. The parameters were mass ratio of water to structure, number of damping nets, and aspect ratio. From the test results, the responses of structure with water tank were observed to be smaller than those of structure alone. Furthermore, better damping effect could be achieved with larger mass ratio, more damping nets, and larger aspect ratio. However, in the case of water tank with no damping net, little damping effect was obtained.

The Study of Relationship between Berm Width and Debris Flow at the Slope (사면에서 토석류와 소단폭의 관계성에 관한 연구)

  • Kim, Sungduk;Oh, Sewook;Lee, Hojin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.5-12
    • /
    • 2013
  • The purpose of this study is to estimate the behavior and the mechanism of debris flow at the end of mountain side when a berm was set on the inclined plane. The numerical model was performed by using the Finite Difference Method(FDM) based on the equation for the mass conservation and momentum conservation. In order to measure the behavior of the debris flow, the debris flow of a straight channel slope and the debris flow of channel slope with 3 types of berms were compared. First, the flow discharge and the sediment volume concentration at the downstream of the channel slope, depending on the various berm width and the different inflow discharges at the upstream of the channel were analyzed. The longer the berm width, the flow discharge at the downstream of the channel was decreased and the high flow fluctuation was reduced by a berm. And it means that a berm can effect for the delay of the debris flow. Through Root Mean Square ratio(RMS) comparison, the flow discharge of the channel slope with a berm was lower than that of a straight channel slope. The longer the berm width, for the sediment volume concentration, an inflection point did not show but mild curve. Because the low sediment concentration with water mixture by a berm continuously flow at the downstream end, it will be effect for reducing the disaster caused by debris flow. The results of this study will provide useful information in predicting and preventing disaster caused by the debris flow.

The Effect of Fluidized-Bed Variables on Attrition of Solid Particles (유동층 공정변수의 고체입자 마모에 미치는 영향)

  • Moon, Young-Sub;Yi, Chang-Keun;Son, Jae-Ek;Ryu, Chung-Keol;Choi, Jeong-Hoo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.603-608
    • /
    • 2005
  • This study was conducted to investigate particle attrition characteristics in a gas desulfurization using zinc titanate sorbent in a 0.035 m i.d. by 1.34 m height gas fluidized bed reactor. Gas jetting from the distributor and bubbling in the gas fluidized bed were found to be the main causes of particle attrition. The experiment was carried out under a slow attrition rate condition to compare the performance of the batch reactor to that of a continuous reactor. The attrition index (AI) and corrected attrition index (CAI) were measured at various the gas velocity, temperature, pressure, and bed weight, in the gas fluidized bed, during the dexulfurization process. The AI (5) and CAI (5) decreased as the bed weight increased. Particle destruction occurred when the particles started to experience physical fatigue under specific impacts over several iterations. AI (5) and CAI (5) also increased as relative humidity, gas velocity and pressure increased, and as temperature decreased. Particle attrition was mainly affected by gas jetting from the distributor, and abrasion resulted in smaller particles than fragmentation did.