• Title/Summary/Keyword: 외피 단열성능

Search Result 31, Processing Time 0.026 seconds

A Study on the Thermal resistance Performance Evaluation Method of Building Exterior System for Passive House Construction (패시브하우스 구축을 위한 건물외피시스템 단열성능 평가 기법 개발에 관한 연구)

  • Kim, Young-Bong;Moon, Jae-Sik;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.143-144
    • /
    • 2017
  • Due to the recent depletion of natural resources and global warming, a passive house type building exterior system has been developed and applied. For this purpose, we developed a building exterior thermal resistance performance evaluation system and verify the feasibility of this system for evaluation of passive house building system.

  • PDF

Research on the Architectural Applications of High-Performance Vacuum Insulation Panel (고성능 진공단열재의 건축적인 적용에 관한 연구)

  • Kwon, Young Cheol;Kim, Suk
    • Land and Housing Review
    • /
    • v.10 no.3
    • /
    • pp.23-32
    • /
    • 2019
  • Vacuum Insulation Panel(VIP) has the lowest thermal conductivity among present insulations. It is composed of envelope, core material and getter. Aluminum film is usually used as the envelope of VIP, and it is important component to decide the useful life of VIP. In this research, the thermophysical properties of incombustible fiber glass core VIP were investigated with the possibility of its architectural applications. The results of this research can be summarized as follows: 1) The thermal conductivity of 20mm-thick fiber glass core VIP is resulted as 0.00177W/m·K, which means that 20mm-thick VIP can meet all the reinforced insulation guideline and it can be used in any envelope of any region in Korea. 2) As a result of the test of incombustion and gas toxicity, fiber glass core VIP was suitable for incombustible material. 3) As the test result for the long term thermal conductivity, fiber glass core VIP was found out that it would keep above 10 times insulating performance than polystyrene foam and glass fiber. 4) To meet the thermal transmittance of 0.12W/㎡K, limited-combustible insulation of expanded polystyrene foam and phenolic foam should be used respectively as thick as above 280mm and 170mm, incombustible VIP can meet the same insulation level with 20mm thickness. 5) The price competitiveness of incombustible VIP to meet the thermal transmittance of 0.12W/㎡·K was about 1,500won/㎡ higher than that of phenolic foam.

The Numerical Analysis on Insulation Performance with Respect to the Envelope Geometries and Array of Evacuated Powder Panel in Rigid Foam/Evacuated Powder Composite Panels (혼합초단열재에서 진공분말패널의 외피형상 및 패널배열에 따른 단열성능해석)

  • Hong, J.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.497-509
    • /
    • 1996
  • Evacuated powder insulations have long been known to have better thermal performance than existing commercially available insulators, such as fiber glass and CFC-blown foam. To make a composite powder panel, a series of individually evacuated panels was encapsulated in a rigid closed cell foam matrix. The panels were encapsulated in a thin glass sheet barrier to preserve the vacuum. The thermal conductivity of the individual panel was found to be $0.0062W/m^{\circ}K$ by experiment and the polyurethane foam above had a thermal conductivity of $0.024W/m^{\circ}K$. In this study, numerical analysis using finite element method was carried out to investigate insulation performance of rigid foam/evacuated powder composite panel with respect to panel geometries such as panel pitch, panel aspect ratio and panel area ratio. Numerical analysis has indicated that more optimal vacuum panel geometries, much lower overall thermal conductivities can be achieved.

  • PDF

Evaluation of Building Envelope Performance of a Dry Exterior Insulation System Using Truss Insulation Frame (트러스 단열 프레임을 이용한 건식 외단열 시스템의 외피 종합 성능 평가)

  • Song, Jin-Hee;Lee, Dong-Yun;Shin, Dong-Il;Jun, Hyun-Do;Park, Cheol-Yong;Kim, Sang-Kyun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.153-164
    • /
    • 2019
  • The presence of thermal bridges in a building envelope cause additional heat loss which increases the heating energy. Given that a higher building insulation performance is required in these cases, the heat loss via thermal bridges is a high proportion of the total heat energy consumption of a building. For the dry exterior insulation system that uses mullions and transoms to fix insulation and exterior materials such as stone and metal sheet, the occurrence of thermal bridges at mullions and transoms is one of the main reasons for heat loss. In this study, a dry exterior insulation system using the truss insulation frame (TIF) was proposed as an alternative to metal mullions. To evaluate the building envelope performance, structural, air-leakage, water-leakage, fire-resistance, thermal, and condensation risk tests were conducted. In addition, the annual energy consumption associated with heating and cooling was calculated, including the linear thermal transmittance of the thermal bridges. As a result, the dry exterior insulation system using TIF achieved the allowable value for all tests. It was also determined that the annual heating load of a building was reduced by 36.7 % when the TIF dry exterior insulation system was used, relative to the dry exterior insulation system using steel pipes without additional insulations.

The Thermal Conduction Property of Structural Concrete using Insulation Performance Improvement Materials (단열성능향상 재료를 사용한 구조용 콘크리트의 열전도 특성)

  • Park, Young-Shin;Kang, Min-Gi;Kim, Jung-Ho;Ji, Suk-Won;Jeon, Hyun-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • The part of a building with the biggest energy loss is the exterior and many studies are actively conducted to reduce the energy loss on that part. However, most studies consider the window frames and insulation materials, but many studies do not discuss the concrete that takes more than 70% of the exterior. In order to minimize the energy loss of buildings, it is necessary to enhance the concrete's insulation performance and studies need to be conducted on this. Therefore, this study used a micro foam cell admixture, calcined diatomite powder, and lightweight aggregates as a part of a study to develop a type of concrete with improved insulation performance that has twice higher thermal conductivity compared to concrete. It particularly secured the porosity inside concrete to lower thermal conductivity. As a result of the experiment, the slump and air capacity showed fair results, but all mixtures containing micro foaming agent showed 14.3~35.1% lower mass per unit of volume compared to regular concrete. Compressive strength decreased slightly due to the materials used to improve the insulating performance, but it all satisfied this study's target strength(24MPa). Thermal conductivity was up to twice higher than that of regular concrete.

Study on the Evaluation of Regional Building Energy Efficiency Rating According to the Insulation Performance of Double Skin Window in Apartment Houses Expanded Balcony (발코니 확장형 공동주택의 이중외피 창호 열성능에 따른 지역별 건축물에너지 효율등급 평가)

  • Jang, Cheol-Yong;Ahn, Byung-Lip;Kim, Chi-Hoon;Hong, Won-Hwa
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.32-37
    • /
    • 2010
  • In order to handle the crisis about energy-environment problem, it is necessary to develop the future-oriented and innovative energy technology in architecture area. So the development of new technology for energy saving and alternative energy use has been spurred in this area. Double skin window system, which is an active covering to respond to the exterior change of the environment, is the skill that can reduce the indoor cooling and heating load and the environmental architecture can be realized. This study works out U-value of windows using the window-simulation program with the development and study of the double skin. In addition, the effect of the double skin insulation on the efficiency rating has been analyzed, applying to the certification system of the building energy efficiency rating which has implemented.

A Study on the Evaluation of Building Energy Rating considering the Insulation Performance of the Building Envelope (외피 열성능에 따른 건물에너지효율등급 분석 연구)

  • Kim, Chi-Hoon;Ahn, Byung-Lip;Kim, Ji-Yeon;Jang, Cheol-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.59-64
    • /
    • 2009
  • According to the building regulation U-value limitation of window is $3.3W/m^2{\cdot}K$ in southern regions, while U-value limitation of wall is $0.35{\sim}0.58W/m^2{\cdot}K$. It means that the energy loss through windows is five times more than it through wall. Therefore, this study analyze how much it has affected building energy rating when the insulation performance of windows and walls is changed by building regulation. In conclusion, in order to obtain 2 rating thermal performance of windows is improved more than 10 percent of U-value limitation and it of wall is improved more than 20 percent. The thermal performance of windows is improved more than 20 percent of U-value limitation and it of wall is improved more than 30 percent to receive 1 rating.

Cyclic Structural Characteristics of Thermal Bridge Breaker Systems embedded in Reinforced Concrete Slabs (벽-슬래브 접합부에 매립된 열교차단장치의 반복하중에 대한 거동특성 평가)

  • Shin, Dong-Hyeon;Oh, Moung-Ho;Kim, Young-Ho;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.511-521
    • /
    • 2015
  • The thermal bridge occurring in a building influences its thermal performance and durability. The domestic typical multi-unit residential buildings suffer thermal losses resulting from thermal bridges of the balcony slab. To minimize the thermal loss between inside and outside of the balcony slab, thermal bridge breaker(TBB) systems have been developed and applied in building construction. Although thermal bridge breaker systems for reinforced concrete(RC) wall-slab joints can improve the thermal performance of a building, it is necessary to verify the structural performance of TBB systems whether they provide proper resistance for cyclic loading. In order to investigate the structural characteristics of TBB systems embedded in RC slabs, cyclic tests of wall-slab joints were performed by applying two reversed cycles at each up to 30 cycles. The test results show that the RC slabs embedding TBBS systems can present excellent structural performance and the maximum moment capacity, energy dissipation capacity and ductility of TBBs systems are enhanced compared to those of the typical RC slabs.

Study on the Thermal Characteristics of Concrete Using Micro Form Admixture (마이크로기포제를 사용한 콘크리트의 열적 특성에 관한 연구)

  • Park, Young Shin;Kim, Jung Ho;Jeon, Hyun Kyu;Seo, Chee Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2013
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. So, various actions to reduce greenhouse gas exhaustion and energy consumption have been prepared by world developed countries. Our government has also been trying to seek energy control methods for houses and buildings by proclaiming political polices on low-carbon green growth and construction and performance standards for environment-friendly housing. The energy consumption by buildings approximately reaches 25% of total korea energy consumption, and the increasing rate of energy consumption by buildings is stiffer than the rate by the other industries. The greatest part in the buildings of the energy consumption is building facade. While lots of research projects for reducing energy consumption of the facade have been conducted, but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research presents here a study to improve the insulation property of structural concrete formed by micro form admixture (MFA) with experimentally reviewing the physical, mechanical and thermal characteristics of the concrete. As the results of this experiment, in the case of concrete mixed with MFA, slump loss has been improved. As the mixing ratio of MFA increases, the compressive strength is decreased and thermal conductivity is increased. Also it was found that water-cement ratio increases, the compressive strength is decreased and thermal conductivity is increased. but, there was not big influence by the change of fine aggregate ratio.

Evaluation and Analysis of Building Energy Rating System Accroding to Insulation Performance of Building Envelope in Regional and Building Form of Apartment House (지역 및 주동형태별 공동주택 외피 단열 성능에 따른 건물에너지효율등급 평가 및 분석)

  • Kim, Min-Kyu;Park, Hyu-Soon;Song, Kyoo-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.49-54
    • /
    • 2013
  • In field of apartment housing currently, insulation technology is the most effective way because it is common to improve the thermal performance, therefore, it is contributed to energy saving as several regional insulation standards and legal mandate method. In addition, by applying of building energy efficiency rating certification system, it has inspired voluntary energy conservation commitment for the building owner or facility manager by making a plan to evaluate and verify building energy performance. However, these circumstances are not enough to acquire a grade 2 of higher information. Therefore, in this study, we analyzed the impact of building energy efficiency rating and confirmed reduction ratio compared to the standard housing on the basis of recent our nation building law when we had changed the shape of windows and wall insulation performance and shapes of housing.