• Title/Summary/Keyword: 외주개발

Search Result 55, Processing Time 0.022 seconds

A Production Planning System for Assembly Process of Offshore Structure Modules (해양구조물의 모듈조립공정을 위한 생산계획법)

  • Jeong-Je Kim;So-Heum Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.173-190
    • /
    • 1992
  • Considerable number of offshore platforms have been built in Korean shipyards ever since 1976. Unlike for the cases of building ships, however, negligible efforts have been made to establish planning methodology for building onshore platforms. Severe congestion has been shown in the processes of assemblying modules of platforms. The module which is the upper part of a platform is a steel structure accommodating various types of outfittings and machinaries. The production planned without proper consideration on allocating work loads by trade used to show severe interferences among trades of workers and resulted in delayed completion. In this paper, a method of planning module assembly in consideration of leveling work loads by trade is discussed. A system of planning has been formulated and tested on a exampled case of producing a mix of 72 modules. The test showed a possibility of saving 31% of manpower and trimming 11% of through put time.

  • PDF

Competency Assessment of Korean Construction Firms on International Plant Projects (국내 기업의 경쟁력 및 업무역량 분석 - 해외 플랜트 사업을 중심으로 -)

  • Jang, Hyoun-Seung;Lee, Bok-Nam;Choi, Seok-In;Koo, Bon-Sang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.4
    • /
    • pp.173-181
    • /
    • 2008
  • Last decade, Korea's export scale has resulted in remarkably increasing tendency, and the Korean construction firms(KCFs)' activities on the global markets also have been revitalized. Therefore, this paper analyze a correlation between changes in the oversee market conditions and firms' competitiveness focused on plant business. The aim of this paper is to analyze the internal competency change of the KCFs on the global markets in the past 5 years and to find gap of internal competencies between KCFs and outstanding foreign firms. From a survey analysis this paper found that the external impacts on the global markets(changes of exchange rates, raw materials prices, supply-demand conditions, etc.) have highly influenced the sales amount of the KCFs. But the impacts to change the operating profit have been analyzed as not important. So it is necessary to reinforce the KCF's internal competencies rater than expecting an improvement of the external conditions. Also, the KCFs should strengthen the design engineering as a core competency.

Development of an Algorithm for Automatic Quantity Take-off of Slab Rebar (슬래브 철근 물량 산출 자동화 알고리즘 개발)

  • Kim, Suhwan;Kim, Sunkuk;Suh, Sangwook;Kim, Sangchul
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.5
    • /
    • pp.52-62
    • /
    • 2023
  • The objective of this study is to propose an automated algorithm for precise cutting length of slab rebar complying with regulations such as anchorage length, standard hooks, and lapping length. This algorithm aims to improve the traditional manual quantity take-off process typically outsourced by external contractors. By providing accurate rebar quantity data at BBS(Bar Bending Schedule) level from the bidding phase, uncertainty in quantity take-off can be eliminated and reliance on out-sourcing reduced. In addition, the algorithm allows for early determination of precise quantities, enabling construction firms to preapre competitive and optimized bids, leading to increased profit margins during contract negotiations. The proposed algorithm not only streamlines redundant tasks across various processes, including estimating, budgeting, and BBS generation but also offers flexibility in handling post-contract structural drawing changes. In particular, the proposed algorithm, when combined with BIM, can solve the technical problems of using BIM in the early phases of construction, and the algorithm's formulas and shape codes that built as REVIT-based family files, can help saving time and manpower.

A Study on the Factors Influencing a Company's Selection of Machine Learning: From the Perspective of Expanded Algorithm Selection Problem (기업의 머신러닝 선정에 영향을 미치는 요인 연구: 확장된 알고리즘 선택 문제의 관점으로)

  • Yi, Youngsoo;Kwon, Min Soo;Kwon, Ohbyung
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.37-64
    • /
    • 2022
  • As the social acceptance of artificial intelligence increases, the number of cases of applying machine learning methods to companies is also increasing. Technical factors such as accuracy and interpretability have been the main criteria for selecting machine learning methods. However, the success of implementing machine learning also affects management factors such as IT departments, operation departments, leadership, and organizational culture. Unfortunately, there are few integrated studies that understand the success factors of machine learning selection in which technical and management factors are considered together. Therefore, the purpose of this paper is to propose and empirically analyze a technology-management integrated model that combines task-tech fit, IS Success Model theory, and John Rice's algorithm selection process model to understand machine learning selection within the company. As a result of a survey of 240 companies that implemented machine learning, it was found that the higher the algorithm quality and data quality, the higher the algorithm-problem fit was perceived. It was also verified that algorithm-problem fit had a significant impact on the organization's innovation and productivity. In addition, it was confirmed that outsourcing and management support had a positive impact on the quality of the machine learning system and organizational cultural factors such as data-driven management and motivation. Data-driven management and motivation were highly perceived in companies' performance.

Validation of Load Calculation Method for Greenhouse Heating Design and Analysis of the Influence of Infiltration Loss and Ground Heat Exchange (온실 난방부하 산정방법의 검증 및 틈새환기와 지중전열의 영향 분석)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.647-657
    • /
    • 2015
  • To investigate a method for calculation of the heating load for environmental designs of horticultural facilities, measurements of total heating load, infiltration rate, and floor heat flux in a large-scale plastic greenhouse were analyzed comparatively with the calculation results. Effects of ground heat exchange and infiltration loss on the greenhouse heating load were examined. The ranges of the indoor and outdoor temperatures were $13.3{\pm}1.2^{\circ}C$ and $-9.4{\sim}+7.2^{\circ}C$ respectively during the experimental period. It was confirmed that the outdoor temperatures were valid in the range of the design temperatures for the greenhouse heating design in Korea. Average infiltration rate of the experimental greenhouse measured by a gas tracer method was $0.245h^{-1}$. Applying a constant ventilation heat transfer coefficient to the covering area of the greenhouse was found to have a methodological problem in the case of various sizes of greenhouses. Thus, it was considered that the method of using the volume and the infiltration rate of greenhouses was reasonable for the infiltration loss. Floor heat flux measured in the center of the greenhouse tended to increase toward negative slightly according to the differences between indoor and outdoor temperature. By contrast, floor heat flux measured at the side of the greenhouse tended to increase greatly into plus according to the temperature differences. Based on the measured results, a new calculation method for ground heat exchange was developed by adopting the concept of heat loss through the perimeter of greenhouses. The developed method coincided closely with the experimental result. Average transmission heat loss was shown to be directly proportional to the differences between indoor and outdoor temperature, but the average overall heat transfer coefficient tended to decrease. Thus, in calculating the transmission heat loss, the overall heat transfer coefficient must be selected based on design conditions. The overall heat transfer coefficient of the experimental greenhouse averaged $2.73W{\cdot}m^{-2}{\cdot}C^{-1}$, which represents a 60% heat savings rate compared with plastic greenhouses with a single covering. The total heating load included, transmission heat loss of 84.7~95.4%, infiltration loss of 4.4~9.5%, and ground heat exchange of -0.2~+6.3%. The transmission heat loss accounted for larger proportions in groups with low differences between indoor and outdoor temperature, whereas infiltration heat loss played the larger role in groups with high temperature differences. Ground heat exchange could either heighten or lessen the heating load, depending on the difference between indoor and outdoor temperature. Therefore, the selection of a reference temperature difference is important. Since infiltration loss takes on greater importance than ground heat exchange, measures for lessening the infiltration loss are required to conserve energy.