• Title/Summary/Keyword: 외부보행로

Search Result 86, Processing Time 0.031 seconds

A Design of the Vehicle Crisis Detection System(VCDS) based on vehicle internal and external data and deep learning (차량 내·외부 데이터 및 딥러닝 기반 차량 위기 감지 시스템 설계)

  • Son, Su-Rak;Jeong, Yi-Na
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.128-133
    • /
    • 2021
  • Currently, autonomous vehicle markets are commercializing a third-level autonomous vehicle, but there is a possibility that an accident may occur even during fully autonomous driving due to stability issues. In fact, autonomous vehicles have recorded 81 accidents. This is because, unlike level 3, autonomous vehicles after level 4 have to judge and respond to emergency situations by themselves. Therefore, this paper proposes a vehicle crisis detection system(VCDS) that collects and stores information outside the vehicle through CNN, and uses the stored information and vehicle sensor data to output the crisis situation of the vehicle as a number between 0 and 1. The VCDS consists of two modules. The vehicle external situation collection module collects surrounding vehicle and pedestrian data using a CNN-based neural network model. The vehicle crisis situation determination module detects a crisis situation in the vehicle by using the output of the vehicle external situation collection module and the vehicle internal sensor data. As a result of the experiment, the average operation time of VESCM was 55ms, R-CNN was 74ms, and CNN was 101ms. In particular, R-CNN shows similar computation time to VESCM when the number of pedestrians is small, but it takes more computation time than VESCM as the number of pedestrians increases. On average, VESCM had 25.68% faster computation time than R-CNN and 45.54% faster than CNN, and the accuracy of all three models did not decrease below 80% and showed high accuracy.

A Preliminary Study for Mapping Pedestrian Spaces in the City - Based on Pedestrian Traversability in Open Space - (현대도시 보행공간의 시각화를 위한 기초연구 - 외부공간의 보행자 통행 가능성 판별기준을 중심으로 -)

  • Lee, Hyun-Woo;Park, So-Hyun
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.33 no.12
    • /
    • pp.93-103
    • /
    • 2017
  • There has been various pedestrian-friendly planning for making walkable cities. However, the representation of urban pedestrian spaces that should be the basis of the pedestrian-friendly planning tends to be far from reality. This is due to the absence of a consensual way to represent pedestrian spaces in the city. In this context, this study aims to propose a method to properly represent pedestrian spaces. For this purpose, this study first reviews the patterns of representing pedestrian spaces appearing on city maps and examines their merits and limits. After that, the criteria of pedestrian traversability and the mapping method are proposed on a trial basis for representing pedestrian spaces. Then, applying this to the case sites, Mokdong and Euljiro, this paper demonstrates how the operation of representing pedestrian spaces works. It is expected that the results of this study would be used as the basic foundation for a more developed representation of effective pedestrian-friendly planning.

A Trail Plan for At-Risk Walkers in Mountainous Urban Park - A Focus on Umyen Nature Park - (산지형 도시공원 내 보행약자를 위한 산책로 조성 연구 -우면산도시자연공원을 대상으로-)

  • Han, Bong-Ho;Bae, Jung-Hee;Ahn, In-Su;Lee, Kyong-Jae
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.6
    • /
    • pp.22-33
    • /
    • 2009
  • This study was undertaken to provide a basis for planning trail standards, providing rights of movement, improvement of health and the experience of nature for at-risk walkers for application to the Umyen Park site. This study researched related laws, manuals, scholastic writing and the established site, a raku-raku mountain trail in Osata, Japan. By referencing these results and similar standards, a conceptual trail plan for at-risk walkers was created. The plan suggests five points -- accessibility, convenience, social aspects, economic efficiency, and environmentally-friendliness -- and referenced an evaluation of outdoor living environments for the elderly. The planning standards are comprised of four steps that are ranked in order and are related to the selection of location, trail structure, route patterns, and equipment. Plans for trails catering to at-risk walkers in Umyen Park were then based on these standards. As a result, it was found that the mountain has both a high elevation and abundant natural resource, both of which must be taken into account during planning. This study is valuable because it is one of the first studies of trail plans for at-risk walkers made in mountainous urban parte. Subsequent research can use the standards of this study for further evaluation while future modifications must reflect changing needs and details.

A Study on the Development of In-Socket Pressure Change Measurement Sensor for Estimation Locomotion Intention of Intelligent Prosthetic leg User (지능형 대퇴의족 사용자의 보행 의도 추정을 위한 소켓 내 압력 변화 측정 센서 개발에 관한 연구)

  • Park, Na-Yeon;Eom, Su-Hong;Lee, Eung-Hyuk
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.249-256
    • /
    • 2022
  • The prosthetic leg is a device that performs walking instead of a amputated lower limb, and require a change in locomotion mode by providing the user's intention to respond to a discontinuous locomotion environment. Research has been conducted to detect the users' intentions through biomechanical features inside the socket that directly contacts the cut site in demand for natural locomotion mode changes without external control equipment. However, there is still a need for a sensor system that is suitable for the internal environment of the main body and socket of the cut site. Accordingly, this paper proposed a film-type sensor system that is suitable for the main body characteristics of the cut site, is not affected by the temperature and humidity conditions inside the socket, and is easy to manufacture in various sizes. The proposed sensor is manufactured base on Velostat film and takes into account the pressure measurement characteristics that vary with size. Through the experiment, the change in the internal pressure of the socket due to the intentional posture performance of the wearer was measured, and the possibility of detecting the intention to change the locomotion mode was confirmed.

Kinematic Analysis of a Legged Walking Robot Based on Four-bar Linkage and Jansen Mechanism (4절 링크 이론과 얀센 메커니즘을 기반으로 한 보행 로봇의 운동학 해석)

  • Kim, Sun-Wook;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.159-164
    • /
    • 2011
  • In this study, a crab robot is implemented in H/W based on four-bar linkage mechanism and Jansen mechanism, and its kinematics is analysed. A vision camera is attached to the mechanism, which makes the proposed robot a kind of biologically inspired robot for image acquisition. Three ultrasonic sensors are adopted for obstacle avoidance. In addition, the biologically inspired robot can achieve the mission appointed by a programmer outside, based on RF and Blue-tooth communication module. For the design and implementation of a crab robot, it is need to get joint variable, a foot point, and their relation. Thus, the proposed kinematic analysis is very important process for the design and implementation of legged robots.

Four-legged robot for glass building cleaning (유리빌딩 청소를 위한 4족 보행로봇)

  • Kim, Cheong-Sol;Kim, Dong-sung;Choi, Cheong-hwan;Park, Ji-min;Jin, Tae-seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.452-455
    • /
    • 2017
  • As the number of high - rise buildings has increased recently, this research society has become interested in the method of cleaning the external wall required. When cleaning these areas, an accident occurs every year when a person uses dangerous manual labor using a gondola. The main goal of this work is to enable people to manipulate the robot with simple operation without dangerous manual operation when working in a vertical structure. As the altitude increases, the concept of the mechanism attaching to the vertical structure while enduring the external resistance in the increase of the wind strength is applied, and the additional attachment device is attached to the end of the leg based on the existing four- According to the control, the development result of the robot having the function of detachable to the glass is presented.

  • PDF

Finite Element Analysis of Continuous Beam Vibration under Pedestrian Loading Considering Moving Mass Effect (이동 질량 효과를 고려한 연속 보의 보행하중 진동 유한요소 해석)

  • Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.309-316
    • /
    • 2022
  • This study proposes a finite element analysis method that can analyze the vibration of a beam by considering the inertia effect of moving masses in a vertical direction. The proposed method is effective when a precise interaction analysis is not required. The inertial effects of the moving masses are included in the equation of motion, and the interaction forces between the masses and the beam are considered only as external loads. Time domain analyses were performed using Abaqus, a general-purpose finite element analysis software, and an implementation method using multi-point constraints wais presented to link the displacements of the beam element nodes and moving rigid masses. The proposed method was verified by comparing its solution with that obtained using an existing analytical method, and the analysis results for continuous beam vibrations under dynamic gait loadings were used to examine the mass effect of pedestrians.

A posture correction of the biped robot using the accelerometer (가속도 센서를 이용한 이족 로봇의 자세보정)

  • Lee, Sung-Ui;Seo, Jae-Kwan;Oh, Sung-Nam;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2546-2549
    • /
    • 2002
  • 이족 로봇(A biped robot)의 안정된 보행과 움직임을 구현하기 위해서는 정밀 센서의 접목이 필수 사항이다. 센서의 정보를 종합한 다음 보행 및 움직임에 적용함으로써 로봇은 향상된 독립성과 자율성을 가지게 되고 그로 인해 지능형 로봇에 한층 더 접근할 수 있게된다. 본 논문에서는 이족로봇의 안정된 보행을 위해 기본이 되는 자세 기울어짐을 측정할 수 있는 가속도 센서를 이용한 이족로봇의 제어 방법을 다루고자 한다. 본 논문의 로봇은 소형 R/C servo motor를 사용하여 설계, 제작 하였으며, 하드웨어 시스템은 메인 CPU로 인텔사의 80C296SA50을 사용, 가속도 측정센서로는 Analog Device 사의 Accelerometer ADXL210를 사용하였다. 이와 같이 가속도 센서를 사용한 시스템은 로봇의 자세를 측정, 판단을 가능케 하여 실시간으로 로봇의 자세를 안정되게 보정 할 수 있어 외부의 변화되는 힘에 자율적으로 대처할 수 있다. 이 때문에 더욱 안정된 지능형 이족로봇을 구현할 수 있다.

  • PDF

Development of Design Method for a Bumper Cross-section Satisfying Protection Requirements for Car Body and Pedestrian (Using CAD/CAM) (충격성능 및 보행자 보호규제를 만족하는 범퍼 단면결정 설계기술 개발 (CAD/CAM 활용을 위한))

  • Kang, Hyung-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.968-972
    • /
    • 2007
  • The importance of bumper system lies not only in the styling of vehicles, but also in the protection of vehicles and pedestrians from reasonable impact. In this study, we proceed to search a method for efficient bumper system without using the impact test and the computer simulation to analyze the bumper system. In the process of the research, we proposed the each method that is used to search the shape that satisfy each regulations in first, because bumper's dimensions to satisfy 'vehicle protection' regulations and form's dimensions to satisfy ‘pedestrian protection' regulations are difficult to exist together. After that we proposed the calculate method and design algorithm that is used to search a reasonable point satisfying the two regulations together.

  • PDF