• Title/Summary/Keyword: 외기부하

Search Result 53, Processing Time 0.031 seconds

Study on Dip Variation of STACIR/AW Conductor Using DC Current Facility (STACIR/AW전선의 대전류설비에 의한 실증적 이도특성에 관한 고찰)

  • Shin, Koo-Yong;Lee, Seong-Doo;Min, Byung-Uk;Wi, Hwa-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.566-568
    • /
    • 2005
  • STACIR/AW은 최근 사용이 증가되고 있는 증용량전선으로 기존 송전선에 비해 많은 전류를 송전하면서도 이도특성이 우수한 장점을 가지고 있다. 이 논문에서는 STACIR/AW 전선의 온도 및 대전류특성에 대한 실증시험을 위하여 구축된 송전선로용 3[kA]급 대전류 발생 장치를 이용해 345kV 송전선로의 표준경간인 350m 시험선로에 $480\;mm^2$$410\;mm^2$ 전선을 가선하여 전류 특성 시험을 수행하였다. 본 논문에서는 최대 허용전류에 대한 단계별 이도특성을 외기 조건과 전선의 장력 변화를 고려하여 고찰하여 국내 주요 전선사의 증용량전선에 대한 신뢰성을 검증하고, 또한 계절별 특성시험 및 환경시험 챔버를 이용한 참고시험과 기본적 동적해석을 통하여 외기 조건에 전선의 최대허용전류를 검토하였다. 또한 실선로에 적용된 $480\;mm^2$$410\;mm^2$ 의 증용량 전선에 최대 부하율을 파악하고 동일 조건에 부하전류를 인가한 실증시험을 통하여 전선의 이도증가율을 분석하여 상용선로의 운전조건을 검토하였다.

  • PDF

Energy Performance of Air-side Economizer System for Data Center Considering Supply Temperature and Design Airflow Rate of CRAH(Computer Room Air Handler) (외기냉방시스템이 적용된 데이터센터 CRAH의 급기온도와 설계 풍량에 따른 에너지성능 분석)

  • Kim, Ji-Hye;Aum, Tae-Yun;Jeong, Cha-Su
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.11
    • /
    • pp.181-188
    • /
    • 2019
  • The purpose of this study is to evaluate the cooling energy saving effects of CRAH supply air temperature(SAT) and design flow rate changes when applying air-side economizer in the data center. MLC(Mechanical Load Component), which is cooling performance indicator of data center, was used to assess the effectiveness of cooling energy savings. It was computed with energy simulation (DesignBuilder) to evaluate the cooling energy performance of 8 different alternatives in a data center. The MLC was 0.31~0.32 regardless of CRAH supply temperature without air-side economizer, and 0.15 to 0.19 value with air-side economizer. That is, cooling energy can be reduced by approximately 40~55% when applying economizer. As the CRAH SAT and design flow rate changed, the MLC values were 0.16 to 0.18 and 0.15 to 0.19, respectively.

Analysis of Test Operations Effect of Open-Closed Loops Complex Geothermal System Combined with Groundwater Well (지하수정호 결합 복합지열시스템의 시범운영 효과분석)

  • Song, Jae-Yong;Kim, Ki-Joon;Lee, Geun-Chun;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.475-488
    • /
    • 2018
  • This study evaluates geothermal system efficiency in terms of input power and heat exchange volume on the heat-source and load sides, by applying a combined open-closed type loop system comprising a geothermal system and a groundwater well to a cultivation site. In addition, this study analyzes the effects of heating and cooling for a complex geothermal system, by evaluating the temperatures of an external site and a cultivation site during operation. During cooling operations the heat exchange volume on the heat source side, average 90.0kW/h for an open type system with an input of 235L/minute groundwater, and 40.1kW/h for a closed type system with an input of 85L/minute circulating water, for a total average heat exchange volume of 130.1kW/h. The actual heat exchange volume delivered on the load side averages 110.4kW/h. The average EER by analysis of the geothermal system's cooling efficiency is 5.63. During heating operation analysis, the heat exchange volume on the heat source side, average 60.4kW/h in an open type system with an input of 266L/minute groundwater, and 22.4kW/h in closed type system with an input of 86L/minute circulating water, for a total average heat exchange volume of 82.9kW/h. The actual heat exchange volume delivered on the load side averages 112.0kW/h in our analysis. The average COP determined by analysis of the geothermal system's heating efficiency is 3.92. Aa a result of the tradeoff between the outside temperature and the inside temperature of the production facility and comparing the facility design with a combined well and open-closed loops geothermal(CWG) system, we determine that the 30RT-volume CWG system temperature are lower by $3.4^{\circ}C$, $6.8^{\circ}C$, $10.1^{\circ}C$ and $13.4^{\circ}C$ for ouside temperature is of $20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$ and $35^{\circ}C$, respectively. Based on these results, a summer cooling effect of about $10^{\circ}C$ is expected relative to a facility without a CWG system as the outside temperature is generally ${\geq}30^{\circ}C$. Our results suggest that a complex geothermal system provides improvement under a variety of conditions even when heating conditions in winter are considered. Thus It is expected that the heating-cooling tradeoffs of complex geothermal system are improved by using water screen.

A study on the performance enhancement for combined cycle using cold heat of LNG (LNG 냉열을 이용한 복합사이클 발전시스템의 성능개선연구)

  • 김용희;김병일
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.77-80
    • /
    • 1996
  • 우리나라에서 피크부하용으로 사용하는 복합발전이 하계시에서 외기온도가 상승함에 따라 실제로는 정격출력을 내지 못하고 있다. 따라서 본 연구에서는 연료(LNG)의 냉열을 이용하여 가스터빈의 연소용공기를 냉각시킬 경우, 복합발전 시스템의 성능변화를 분석하기 위하여 시뮬레이션을 수행하였다. 그 결과 LNG의 냉열을 이용하여 연소용공기를 원하는 온도까지 냉각시킬 수 있음을 확인할 수 있었다. 또한 연소기로 연료를 투입하기전에 설계온도까지 예열시키는 열교환기를 통해 배기가스에 함유된 현열을 더욱 많이 회수하면서, 가스터빈 투입연료의 온도를 상승시킬 수 있어, 시스템효율이 더욱 상승함을 알 수 있었다. 결론적으로 외기온도가 변하는 경우에, 본 시스템의 도입을 위해서는 경제성분석과 더불어 열교환기 시스템의 최적합성이 추후 진행되어야 할 것이며, 이를 통해 최적의 발전시스템을 구성할 수 있으리라 생각된다.

  • PDF

Viability of HVAC System for Energy Conservation in High Density Internal-load Dominated Buildings (고밀도 내부부하 중심 건물의 에너지 절약적 공조방식에 대한 연구)

  • Cho, Jin-Kyun;Jeong, Cha-Su;Kim, Byung-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.530-537
    • /
    • 2010
  • With the advancement of technology, the density of IT equipment, heat load and power consumption continue to increase in high density internal-load dominated buildings as datacenters. To improve the HVAC system's energy performance and efficiency, there is a need to find methods of using outside air. Through cooling tower control that is based on outside wet-bulb temperature, the water-side economizer made it possible to achieve a maximum energy performance improvement of about 16.6% over the basic chilled water system, whereas the air-side economizer, through control based on outdoor air enthalpy, made it possible to achieve about 42.4% improvement.

A Study on the Energy Conservational HVAC System Design Strategies (에너지 절약적 공조시스템 선정을 위한 기초적 연구)

  • Cho, Jin-Kyun;Hong, Min-Ho;Jeong, Cha-Su;Kim, Byung-Seon
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.58-63
    • /
    • 2007
  • Lots of needs are being paid for how to design HVAC system in large-scale buildings. Increasing awareness of energy use is main point of this research. HVAC systems' energy characteristics are not clearly identified and understood, so the optimal design of HVAC system is very important. The energy parameters of HVAC design that are system input energy, water/air moving equipments (pumps/fans) energy and outdoor air conditioning energy for IAQ are important. The purpose of this study is to provide the basic data for energy conservational HVAC design strategies.

  • PDF

A Study on the Simplified Presumption Method for the Prediction of Cooling and Heating Performance in a Fresh Air Load Reduction System by Using Geothermal Energy (지열 이용 외기부하 저감시스템의 냉각 및 가열효과 예측 간이추정법에 관한 연구)

  • Son, Won-Tug;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.3
    • /
    • pp.169-181
    • /
    • 2010
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The fresh air is introduced into the double slab space and passes through the opening bored into the footing beam. The air is cooled by the heat exchange with the inside surface of the double slab space in summer, and heated in winter. This system not only reduces sensible heat load of the fresh air by heat exchange with earth but also reduces latent heat load of the fresh air by ad/de-sorption of underground double slab concrete. In this paper, we proposed a simplified presumption method for the prediction of cooling and heating performance in the system. In conclusion the proposed method has been verified by comparing with the calculated value of the numerical analysis model by using nonlinear two-dimension hygroscopic question.

  • PDF

A Study on Performance of Energy Recovery Ventilator under Outdoor Conditions in Korea (국내 외기조건에서 폐열회수 환기장치의 성능에 관한 연구)

  • Kim, Il-Gyoum;Park, Woo-Cheul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.52-57
    • /
    • 2009
  • In this study, a simulation program has been developed to predict the performance of energy recovery ventilators fur various indoor and outdoor conditions. In order to get a fundamental data about domestic air condition, the heat recovery ventilator is selected with the product of the wind quantity $250m^3/h$ Japanese M companies which are satisfied at High Efficiency Certification Standards. At the case on which the heat recovery ventilator is established, heating load decreases by 69.1% and cooling load decreases by 59.4% in Seoul, and heating load decreases by 66.4% and cooling load decreases by 59.6% in Pusan. The maximum humidification load of winter or summer time with $0.737{\ell}/h$ or $1.008{\ell}/h$ occurred in March from Kangnung or August from Mokpo respectively. In Southern part region and East Sea of winter time, the condensation or frost on exhaust side dose not occurred on exhaust side, but the area of that outside is occurred. Therefore, the preventive measure from the area except a southern part region and the east coast area must be considered, in order to condense or frost not to occur on exhaustion side in winter.

A Survey on the Electric Power Consumptions of Apartments located at Coastal Area : Yeongdo-gu, Busan, Korea (연안지역 아파트의 전력소비량 실태조사 - 부산광역시 영도구에 대한 사례연구 -)

  • Hwang, Kwang-Il
    • Journal of Navigation and Port Research
    • /
    • v.33 no.3
    • /
    • pp.241-245
    • /
    • 2009
  • Because of the heat island phenomenon and sea wind, there can be thermal conditions' differences around buildings at downtown and coastal area respectively in coastal city, like Busan, Incheon, Mokpo. For the final purpose of the buildings' energy saving design and operation considering of above mentioned environments differences, energy consumption including heating and cooling loads, electric loads are necessary to be accumulated and analyzed in as the database. As a part of this concept, this study aims to survey and analyze each loads of 22 apartments which has at least 100 households respectively and is located at Yeongdo island, Busan, Korea It is cleared that despite the residents living in this district can use sea wind as a natural ventilation and/or cooling methods, they mainly depends on the electric-driven air-conditioners for cooling with window-closed because of anti-salt problems of the sea wind. This leads the maximum power consumption of the surveyed-22-apartments to be appeared in August like that of inland buildings.

Cooling System for Power Transformer Using Weighting Function (하중함수를 이용한 전력용 변압기 냉각 시스템)

  • Cho, Do-Hyeoun
    • 전자공학회논문지 IE
    • /
    • v.49 no.2
    • /
    • pp.40-45
    • /
    • 2012
  • In this paper, cooling system of power transformers is proposed for temperature optimized control. We predict the peak temperature of power transformer coils using load factors and construct a cooling system using weighting function. For the optimized temperature control for power transformer, a correlation function based on the load factor of a load current and the each temperatures for winding coils, for air and for oil is presented to predict the winding-coil peak temperature. Also, the results controlled by applying the power transformer is presented.