• Title/Summary/Keyword: 왕복동형 압축기

Search Result 19, Processing Time 0.022 seconds

Finite Element Analysis of Piston Slap Phenomenon in Reciprocating Compressors Considering Coolant Circulation (냉매순환을 고려한 왕복동형 압축기의 피스톤 슬랩현상에 대한 유한요소 해석)

  • Moon, Seung-Ju;Cho, Jin-Rae;Kim, Hyun-Ok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1087-1094
    • /
    • 2003
  • The piston slap phenomenon occurs when the piston collides with the internal wall of the cylinder. Impact force caused by piston slap is one of the major mechanical noise sources in reciprocating compressors. In response to public demand, strict regulations are increasingly being imposed on the allowable noise level which is caused mostly by household electric appliances. In this paper, forces acting on piston by considering the dynamic behavior of suction and discharge valves are analytically calculated and the piston slap caused by the piston secondary motion is investigated by the finite element method.

Dynamic Behavior Analysis of a Reciprocating Compressor Body with Variable Rotating Speed (가변속 왕복동형 압축기 본체의 동적 거동 해석)

  • 김태종
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.374-383
    • /
    • 2001
  • A reciprocating compressor unit with variable rotating speed driven by BLDC motor is mounted Inside hermetic chamber on an internal suspension composed of 4 roil springs and a discharge pipe. A method for predicting the dynamic behavior of compressor body is required for a reduction of transmitted vibrations. The mechanical characteristics of spring and discharge pipe stiffness properties have been obtained from experimental tests and mass moment of inertia of the compressor body iron CAD. To confirm the vibration model for the compressor body, free vibration analyses are performed with theoretical and experimental methods. results for analytical investigations on the dynamic behavior of the compressor body and the transmitted forces to the hermetic chamber through the suspension elements are Presented.

  • PDF

Flow Analysis and Measurement of Pressure Distribution along Inclined Circular Valve Reeds of Reciprocating Compressor (왕복동형 압축기의 경사진 원판형 밸브리드에 대한 압력분포 측정 및 유동해석)

  • Yoon, Jung;Park, Jong-Ho;Kim, Tae-Min;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1942-1947
    • /
    • 2003
  • The valve is the key part which governs the efficiency, noise and reliability of the compressor, so the development of analytical model about valve performance is necessary. As the valve leed is opened and closed by pressure pulsation, the flow characteristic of the refrigerant passing the valve is very important. In the present study, a circular disk with inclination is assumed to be the valve reed of a reciprocating compressor and numerical analysis of three dimensional velocity fields are perfomed for the radial flow through the valve model. The effective flow and force area which are required to predict the efficiency of the valve are measured and compared with the numerical analysis in this research.

  • PDF

Coupled Oil-Structure Analysis for Piston Motion in Reciprocating Compressors (윤활-구조물 연계해석을 이용한 왕복동형 압축기의 피스톤 거동해석)

  • Moon, Seung-Ju;Cho, Jin-Rae;Ryu, Sung-Hyon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.513-518
    • /
    • 2003
  • The piston slap phenomenon is one of the major noise source of reciprocating compressors used in household electric appliances. In response to public demand, strict regulations are increasingly being imposed on the allowable noise level which is caused mostly by household electric appliances. In this paper, the dynamic behavior of suction and discharge valves are analytically calculated and the lubricant behavior between piston and cylinder are investigated using two-dimensional Reynolds equation. And the piston slap caused by the piston secondary motion is investigated by the finite element method.

  • PDF

Internal Flow Measurement and Visualization of Inside Valve Sheet of a Reciprocating Compressor Using a PIV System (PIV시스템을 이용한 왕복동형 압축기 밸브시트 내의 내부유동측정 및 가시화)

  • Park Jong Ho;Kim Kyung Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.99-102
    • /
    • 2003
  • PIV(Particle Image Velocimetry)was used to visualize the interaction of reed valve of the reciprocating compressor. The valve is the key part which governs the efficiency, noise and reliability of the compressor, so the development of analytical model about valve performance is necessary. As the valve reed is opened and closed by pressure pulsation, the flow characteristic of the refrigerant passing the valve is very important. In the present study, a circular disk with inclination is assumed to be the valve reed of a reciprocating compressor, The mean velocity shows the vortical characteristic of this flow. It is found that the back flow is affected by the height of reed valve of reciprocating compressor.

  • PDF

Drop/Impact Simulation and Experimental Verification of a Reciprocating Compressor Body (왕복동형 압축기의 낙하충격 시뮬레이션 및 실험적 검증)

  • Kim, Tae-Jong;Kim, Moon-Saeng;Koo, Ja-Ham
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.484-490
    • /
    • 2007
  • A reciprocating compressor used in domestic refrigerators can be subjected to many different forms of shock. These shocks are usually experienced during transporting the products from a manufacturer to customers. The hermetic structure of this kind of compressor makes it difficult to conduct drop tests for identifying the failure mechanism and their drop behaviors. The drop/impact simulation for a reciprocating compressor has been carried out with the explicit code LS-DYNA and its validation has been experimentally verified. Simulation results are in good agreement with those of drop test. The present method of drop/impact simulation provides an efficient and powerful solution to improve the design quality and reduce the design period.

Frictional Loss Analysis of a Reciprocating Compressor with Thrust Ball Bearing (스러스트 볼 베어링이 적용된 왕복동형 압축기의 마찰손실 해석)

  • Kim, Tae-Jong
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.101-108
    • /
    • 2011
  • In this paper, a study on the frictional losses and dynamic behaviors of a reciprocating compression mechanism used in small refrigeration compressor is performed. In the problem formulation of the compressor dynamics, the viscous frictional force between piston and cylinder wall is considered in order to determine the coupled dynamic behaviors of piston and crankshaft supported on a thrust ball bearing. The solutions of the equations of motion of the reciprocating mechanism along with the time dependent Reynolds equations for the lubricating film between piston and cylinder wall and lubricant films of the journal bearings are obtained simultaneously. The hydrodynamic forces of journal bearings are calculated using finite bearing model and G$\hat{u}$m-bel boundary condition. And, a Newton-Raphson procedure was employed in solving the nonlinear equations of piston and crankshaft with a thrust ball bearing. The results explored the effects of design parameters on the frictional losses and dynamic stability of the compression mechanism.

Flow Analysis and Measurement of Pressure Distribution along Inclinde Circular Valve Reeds and Valve Seat Geometric Parameters of Reciprocating Compressor (왕복동형 압축기의 경사진 원판형 밸브리드와 밸브 시트의 기하학적 파라미터에 대한 압력분포 측정 및 유동해석)

  • Park, Jong-Ho;Yoon, Jong;Kim, Tae-Min;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.828-833
    • /
    • 2003
  • This work analyzes the effects of the independent variation of different geometric dimensions of compressor valves on the effective flow and force areas using a circular valve plate, such as different geometry of the valve seat, and the valve reed is opened and closed by pressure pulsation, the flow characteristic of the refrigerant passing the valve is very important. In the present study, a circular disk with inclination is assumed to be the valve reed of a reciprocating compressor and numerical analysis of three dimensional velocity fields are performed for theradial flow through the valve model. The effective flow and force area which are required to predict the efficiency of the valve are required to predict the efficiency of the valve are measured and compared with the numerical analysis in this research.

  • PDF

Dynamic Behavior Analysis of Reciprocating Compressor Pistons (왕복동형 압축기 피스톤의 동적 거동 해석)

  • 김태종
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.717-724
    • /
    • 2002
  • In this study, a numerical analysis for the piston secondary dynamics of small refrigeration reciprocating compressors is performed. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the change in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the hydrodynamic force and moment as functions of crank angle under compressor running conditions. The results explored the effects of the radial clearance, lubricant viscosity, length of the cylinder wall, and pin location on the stability of the piston.

Performance analysis of the reciprocating compressor with hydrocarbon refrigerant mixtures, R290/R600a (탄화수소계(R290/R600a) 혼합냉매를 적용한 왕복동형 압축기 성능 해석)

  • 김종헌;정연구;박경우;박희용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.270-280
    • /
    • 1999
  • A performance analysis simulation program that can be applied to a hermetic reciprocating compressor with various refrigerants has been developed. For the numerical analysis, the passage of refrigerant in compressor is subdivided into control volumes. Instead of the ideal gas assumption, CSD equation of state is applied to calculate the thermodynamic properties of refrigerants. To verify the validity of developed program, the result has been compared with the experimental data served by the compressor supplier. The performance of each refrigerant and the possibility of direct application are estimated by applying R12, 134a, R290, R600a and R290/R600a mixture to an existing compressor. Also, parametric study for various crank rotating speeds and the mole fractions of refrigerant has been performed.

  • PDF