• Title/Summary/Keyword: 왕겨분말

Search Result 20, Processing Time 0.021 seconds

Improvement of Interfacial Adhesion for Surface treated Rice Husk Flour-Filled Polypropylene Bio-Composites (표면처리에 의한 왕겨분말-폴리프로필렌 바이오복합재의 계면 접착력 향상)

  • Lee, Byoung-Ho;Kim, Hee-Soo;Choi, Seung-Woo;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.38-45
    • /
    • 2006
  • The main objective of this study is the improvement of the interfacial adhesion of RHF-polypropylene (PP) bio-composites through NaOH and acetic acid treated RHF. After manufacturing of untreated and NaOH and acetic acid treated RHF filled PP bio-composites, the effect on interfacial adhesion of bio-composites was investigated. Tensile strength of the bio-composites made from treated RHF with NaOH and acetic acid was higher than that of the untreated bio-composites. The RHF surface before and after NaOH and acetic acid treatment was clearly confirmed by scanning electron microscopy (SEM) micrograph. It was found that both treatments result in a removal of impurity materials of RHF surface by SEM micrographs. The chemical structures of untreated and NaOH and acetic acid treated RHF were confirmed by fourier transform infrared (FTIR). The crystallization structure and crystallinity of non-treated, NaOH and acetic acid treated RHF were investigated by wide-angle X-ray scattering (WAXS).

Morphological changes and Thermal properties from Pretreatement Conditions of the Rice-husk powder (왕겨분말의 전처리 조건에 따른 형태학적 변화 및 열적특성)

  • Kim, Mi-Sun;Kim, Tae-Hwa;Han, Hyun-Kak;Lee, Ki-Woong;Joo, Deuk-Ki
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.513-516
    • /
    • 2011
  • 본 연구에서 NaOH, Acetic acid, Silane 처리는 천연섬유와 matrix간의 계면 결합에 불리하게 작용하는 wax, lignin, hemicellose 등을 제거하기 위한 방법 중의 하나이다. 이러한 화학적 처리에 따른 왕겨분말의 형태학적 변화와 열적특성 변화를 관찰하였다. 전처리 조건으로 농도는 1.5%, 3%, 9%이며 각각 30min, 60min, 90min을 처리하였다. 처리하지 않은 왕겨 분말과 NaOH, Acetic acid, Silane 처리를 한 왕겨 분말의 성분을 Energy dispersive spectroscopy(EDS)로 분석하였으며, Scaning electron microscopy(SEM)으로 표면을 관찰하였다. 표면의 상태가 NaOH, Acetic acid, Silane 처리를 하였던 왕겨 분말이 처리를 하지 않았던 왕겨 분말보다 비교적 깨끗해지고, 크랙이 발생함을 확인하였다. 또한 전처리가 된 상태에서 수분흡수율을 측정하고, 처리를 하지 않은 왕겨 분말과 NaOH, Acetic acid, Silane 처리를 한 왕겨 분말을 Thermogravimetric Analysis(TGA)로 열분석을 실시하였다.

  • PDF

Magnesium Sulfate Resistance of Geopolymer Incorporating Evaporated Rice Husk Powder (증해추출 왕겨분말을 혼입한 지오폴리머의 황산마그네슘 저항성에 관한 연구)

  • Cho, Seung-Bi;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.663-672
    • /
    • 2022
  • The purpose of this study is to evaluate the magnesium sulfate resistance of a geopolymer mixed with rice husk powder. General concrete, silica fume mixed concrete, and binary blended geopolymer were selected as comparison targets to confirm the magnesium sulfate resistance, and sulfate deterioration was calculated using the compressive strengths with ages. In addition, the weight change rate and the relative dynamic coefficient of the geopolymer were comparatively analyzed, and the degree of etteringite formation was confirmed using X-ray diffraction analysis. the experiment, the geopolymer mixed with 10% rice husk powder showed 10.8% higher compressive strength than concrete with silica fume when submerged for 56 days. Also, the geopolymer mixed with rice husk powder showed a small weight change rate of 0.9 to 1.45%. composition after immersion in magnesium sulfate through X-ray diffraction analysis, it was observed that a small amount of ettringite was dispersed in the geopolymer containing rice husk powder. Thus, there is a high correlation with the corrosion resistance of magnesium sulfate

Evaluation of the Impact on Manufacturing Temperature and Time in the Production Process of Bio-composites (바이오복합재료 제조 공정시 제조온도 및 시간에 의한 영향 평가)

  • Park, Sang-Yong;Han, Gyu-Seong;Kim, Hee-Soo;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.29-37
    • /
    • 2005
  • The main objective of this research was conducted to evaluate the impacts on the thermoplastic polymer which is a matrix polymer and the rice husk flour (RHF) which is a reinforcing filler relative to the manufacturing temperature and time when bio-composites were manufactured. In order to evaluate the impacts on the rice husk flour relative to the manufacturing temperature, the rice husk flour was persevered for 10 minutes to 2 hours period at $220^{\circ}C$ temperature which was then added with the polypropylene (PP) and low-density polyethylene (LDPE) to complete the manufacturing process of the bio-composites and measure the corresponding mechanical properties. As preserving time increased at $220^{\circ}C$, the tensile and impact strength were decreased due to the thermal degradation of the main components within the rice husk flour. The thermogravimetric analysis (TGA) was used to measure weight loss caused by the actual manufacturing temperature and the result was that the thermoplastic polymer had not scarcely occurred weight change, but there had been increasing rate of weight loss relative to time for the rice husk flour and the bio-composites under the consistent temperature of $220^{\circ}C$ for 2 hour time period. Therefore, the proper manufacturing temperature and time settings are significantly important features in order to prevent the reduction of mechanical properties which were induced throughout the manufacturing process under the high manufacturing temperature.

The mechanical properties of Rice husk reinforced Bio-composites (왕겨를 이용한 바이오 복합재의 기계적 특성)

  • Kim, Tae-Hwa;You, Hye-Jin;Han, Hyun-Kak;Lee, Ki-Woong;Joo, Deuk-Ki
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05a
    • /
    • pp.363-366
    • /
    • 2012
  • 본 연구에서 NaOH, Acetic acid, Silane 처리는 천연섬유와 matrix간의 계면 결합에 불리하게 작용하는 wax, lignin, hemicellose 등을 제거하기 위한 방법 중의 하나이다. 이러한 화학적 처리에 따른 왕겨 분말의 기계적 특성 변화를 관찰하였다. Scaning electron microscopy(SEM)으로 관찰한 표면의 상태가 NaOH, Acetic acid, Silane 처리를 하였던 왕겨 분말이 처리를 하지 않았던 왕겨 분말보다 비교적 깨끗해지고, 크랙이 발생함을 확인하였다. 또한 전처리가 된 상태에서 PP와 20, 30, 40%의 비율로 복합재를 제조하여 Universal Testing Machine(UTM)으로 인장강도, 굴곡강도, 굴곡탄성률을 측정하였다. 또한, 왕겨의 입도 사이즈에 따라서 어떻게 변화되는지 알아보았다.

  • PDF

Processability of Bio-composites Applied Polyolefin to Recycled Fiberboard Flour (Polyolefin계 고분자에 섬유판 가공 부산물을 적용한 환경 친화형 바이오복합재의 가공성)

  • Choi, Seung-Woo;Kim, Hee-Soo;Lee, Byoung-Ho;Kim, Hyun-Joong;Ahn, Sye-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.55-62
    • /
    • 2005
  • This study was conducted to evaluate the application of a bio-composite made by the addition recycled fiber board flour as filler. Recycled fiber board (high density fiber board, HDF) flour was added to polyolefin polymer low density polyethylene (LDPE) and polypropylene (PP) for the preparation of bio-composite materials. The mechanical properties and processability of the recycled HDF flour filled LDPE and recycled HDF flour filled PP bio-composites were then measured and compared to those of wood flour (WF) and rice-husk flour (RHF) filled LDPE and PP bio-composites, respectively. The tensile and impact strengths of the recycled HDF flour filled LDPE and PP bio-composites had similar mechanical properties to those of the WF and RHF filled LDPE and PP bio-composites. To measure the processability, torques of the bio-composites were also measured. The torques of the HDF flour filled LDPE and PP bio-composites were lower than those of the WF and RHF filled polyolefin (PP and LDPE) bio-composites with a filler loading of 30 wt.%. This result showed definite processability, which was not related with the distribution of the particle size of the material added. The recycled fiber board flour filled bio-composites showed applicability as substitutes for the bio-composites currently used in the bio-composites industry.

A Study on the Mix Design Model of 40MPa Class High Strength Mortar with Rice Husk Powder Using Neural Network Theory (신경망 이론을 적용한 40MPa급 증해추출 왕겨분말을 혼입한 고강도 무시멘트 모르타르 배합설계모델에 관한 연구)

  • Cho, Seung-Bi;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.156-157
    • /
    • 2022
  • The purpose of this study is to propose a 40MPa mortar mixed design model that applies the neural network theory to minimize wasted effort in trial and error. A mixed design model was applied to each of the 60 data using fly ash, blast furnace slag fine powder and thickened rice husk powder. And in the neural network model, the optimized connection weight was obtained by repeatedly applying it to the MATLAB. The completed mixed design model was demonstrated by analyzing and comparing the predicted values of the mixed design model with those measured in the actual compressive strength test. As a result of the mixed design verification experiment, the error rates of the double mixed non-cement mortar using blast furnace slag fine powder and rice husk powder at a height of 40MPa were 3.24% and 3.4%. Mixed with fly ash and rice husk powder had an error rate of 3.94% and 5.8%. The error rate of the triple mixed non-cement mortar of the rice husk powder, fly ash, and blast furnace slag fine powder was 2.5% and 5.1%.

  • PDF

Burning Characteristics of Smoke Generator of Pesticides Depending on Combustible Carrier and Formulation Type (제형과 가연성 담체에 따른 농약 훈연제의 연소 특성)

  • Lim, He-Kyoung;Kim, Yong-Whan;Cho, Kwang-Yun;Yu, Ju-Hyun
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.325-331
    • /
    • 2004
  • In order to study the effect of formulation type on the burning characteristics of smoke generator, fenarimol smoke generators containing the powdered rice chaff as a combustible carrier were prepared by molding the kneaded mixtures into various shapes. Smoke generators containing wood flour as a combustible carrier were also prepared and compared with smoke generators containing rice chaff. All the fenarimol smoke generators moulded into powders, granules, and rods continuously burned out when the sodium chlorate content exceeded 11%. Regardless of their types, the highest smoking rate of fenarimol was observed with more than 13% of sodium chlorate. The smoking rate of active ingredient followed with the increasing order of powder (64.5%) < granule (78.4%) < rod (90.9%). The smoke rod was robust, easy to ignite, and showed the highest smoking rate among the tested formulations. When the mixture of wood flour and anti-flame agent was used as a combustible carrier, the burning rate was so slow that wood flour formulation seemed to be more suitable to a slow-burning fumigant rather than smoke generator.

Effect of Oxidizing Agents on the Burning Characteristics of Smoke Rod of Pesticides Using Rice Chaff as a Combustible Carrier (왕겨를 가연성 담체로 하는 봉상 농약 훈연제의 연소성에 미치는 산화제의 영향)

  • Lim, He-Kyoung;Kim, Yong-Whan;Cho, Kwang-Yun;Yu, Ju-Hyun
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.332-338
    • /
    • 2004
  • An investigation in search of the best oxidizing agent for smoke generators using rice chaff as a combustible carrier was carried out. Smoke rods formulated with active ingredients (AIs) such as inorganic oxidizing agents, glue, and powdered rice chaff, showed constant and high burning rate and high smoking rate on 11 kinds of pesticides. Sodium chlorate was the most suitable oxidizing agent for smoke rod. Even though the sodium chlorate content of the formulation showing the highest smoking rate of AI was variable to pesticides, the smoking rate appeared to increase as the burning rate increased. Active ingredients in smoke generator using rice chaff as a combustible carrier were stable for 60 days when stored at $50^{\circ}C$. An apparatus designed for smoke trapping was useful to collect smoked active ingredients.

SiC aggregates synthesized from carbonized rice husks, paper sludge, coffee grounds, and silica powder (탄화왕겨, 제지슬러지, 커피찌거기 및 실리카 혼합물로부터 탄화규소 결정체 합성)

  • Park, Kyoung-Wook;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.45-49
    • /
    • 2019
  • Relatively fine silicon carbide (SiC) crystalline aggregates have been synthesized with the carbonized rice husks, paper sludge, coffee grounds as the carbon sources and the silica powder. The main reaction source to obtain silicon carbide (SiC) aggregates from the mixture of carbon sources and silica was inferred as the gaseous silicon monoxide (SiO) phase, being created from this mixture through the carbothermal reduction reaction. The silicon carbide (SiC) crystalline aggregates, fabricated from the carbonized rice husks and paper sludge, coffee grounds and silica ($SiO_2$) powder, were investigated by XRD patterns, FE-SEM and FE-TEM images. In these specimens, obtained from the carbonized rice husks, paper sludge and silica, XRD patterns showed rather high strong peak of (111) plane near $35^{\circ}$. The FE-TEM images and patterns of specimens, synthesized from carbonized rice husks, paper sludge, coffee grounds and silica under Ar atmosphere, showed relatively fine particles under $1{\mu}m$ and crystalline peak (110) of silicon carbide (SiC) diffraction pattern.