• Title/Summary/Keyword: 완전 내재적 시간전진

Search Result 3, Processing Time 0.015 seconds

Fully-Implicit Decoupling Method for Incompressible Navier-Stokes Equations (비압축성 나비어-스톡스 방정식의 완전 내재적 분리 방법)

  • Kim, Kyoung-Youn;Baek, Seung-Jin;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1317-1325
    • /
    • 2000
  • A new efficient numerical method for computing three-dimensional, unsteady, incompressible flows is presented. To eliminate the restriction of CFL condition, a fully-implicit time advancement in which the Crank-Nicolson method is used for both the diffusion and convection terms, is adopted. Based on an approximate block LU decomposition method, the velocity -pressure decoupling is achieved. The additional decoupling of the intermediate velocity components in the convection term is made for the fully -implicit time advancement scheme. Since the iterative procedures for the momentum equations are not required, the velocity components decouplings bring forth the reduction of computational cost. The second-order accuracy in time of the present numerical algorithm is ascertained by computing decaying vortices. The present decoupling method is applied to minimal channel flow unit with DNS (Direct Numerical Simulation).

Strongly Coupled Method for 2DOF Flutter Analysis (강성 결합 기법을 통한 2계 자유도 플러터 해석)

  • Ju, Wan-Don;Lee, Gwan-Jung;Lee, Dong-Ho;Lee, Gi-Hak
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • In the present study, a strongly coupled analysis code is developed for transonic flutter analysis. For aerodynamic analysis, two dimensional Reynolds-Averaged Navier-Stokes equation was used for governing equation, and ε-SST for turbulence model, DP-SGS(Data Parallel Symmetric Gauss Seidel) Algorithm for parallelization algorithm. 2 degree-of-freedom pitch and plunge model was used for structural analysis. To obtain flutter response in the time domain, dual time stepping method was applied to both flow and structure solver. Strongly coupled method was implemented by successive iteration of fluid-structure interaction in pseudo time step. Computed results show flutter speed boundaries and limit cycle oscillation phenomena in addition to typical flutter responses - damped, divergent and neutral responses. It is also found that the accuracy of transonic flutter analysis is strongly dependent on the methodology of fluid-structure interaction as well as on the choice of turbulence model.

Convergence Study of the Multigrid Navier-Stokes Simulation: I. Upwind Schemes (다중 격자 Navier-Stokes 해석을 위한 수렴 특성 연구 : I. 상류 차분 기법)

  • Kim, Yoon-Sik;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.1-9
    • /
    • 2004
  • This study concentrates on the upwind schemes for convergence acceleration of the multigrid method for the Navier-Stokes equations. Comparative study of the upwind schemes in the Fourier space has been performed to identify why the second-order upwind scheme with enlarged stencil can be preconditioned better than the classical second-order upwind scheme. The full-coarsening multigrid method with implicit preconditioned multistage scheme has been implemented for verification of analysis. Numerical simulations on the inviscid and turbulent flows with the Spalart-Allmaras turbulent model have been performed. The results showed consistent trend with the analysis.