• Title/Summary/Keyword: 와이어매쉬

Search Result 4, Processing Time 0.021 seconds

High-Velocity Impact Experiment on Impact Resistance of Steel Fiber-Reinforced Concrete Panels with Wire Mesh (와이어매쉬와 강섬유로 보강된 콘크리트 패널의 내충격성 규명을 위한 고속충격실험)

  • Kim, Sang-Hee;Hong, Sung-Gul;Yun, Hyun-Do;Kim, Gyu-Yong;Kang, Thomas H.K.
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.103-113
    • /
    • 2015
  • This paper studies impact performance of wire-mesh and steel fiber-reinforced concrete based on high-velocity impact experiments using hard spherical balls. In this experimental study, panel specimens were tested with various parameters such as steel fiber volume fraction, presence/absence of wire mesh, panel thickness, impact velocity, and aggregate size for the comparison of impact resistance performance for each specimen. While improvement of the impact resistance for reducing the penetration depth is barely affected with steel fiber volume fraction, the impact resistance to scabbing and perforation is improved substantially. This was due to the fact that the steel fiber had bridging effects in concrete matrix. The wire mesh helped minimizing the crater diameter of front and back face and enhanced the impact resistance to scabbing and perforation; however, the wire mesh did not affect the penetration depth. The wire mesh also reduced the bending deformation of the specimen with wire mesh, though some specimens had splitting bond failure on the rear face. Additionally, use of 20 mm aggregates is superior to 8 mm aggregates in terms of penetration depth, but for reducing the crater diameter on front and back faces, the use of 8 mm aggregates would be more efficient.

An Experimental Study on the Flexural Characteristics of Water-permeable Concrete reinforced with Wire Mesh and Fibers (와이어 매쉬 및 섬유 종류별 보강된 투수 콘크리트의 휨특성에 관한 실험적 연구)

  • Lee, Byung-Jae;Park, Seong-Bum;Jang, Young-Il;Jun, Heum-Jin;Hyun, Ji-Hong;Cho, Kwang-Yun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.367-368
    • /
    • 2010
  • Having function to reducing environmental load, water-permeable concrete has advantages to ground permeation of rain-water and sound absorbtion, heat island reduction, etc., but represents the low flexural characteristics compared with general concrete. Therefore, this study analyzed the flexural characteristics by producing water-permeable concrete mixed with wire mesh or fiber reinforcing for improvement to the flexural characteristics of water-permeable concrete.

  • PDF

A Comparative Study on the Quality of Recycled Aggregate for Concrete by Crushing Method (파쇄 방법에 따른 콘크리트용 순환골재의 품질 비교 연구)

  • Choi, Won-Young;Lee, Sae-Hyun;Kim, Seoung-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.121-129
    • /
    • 2017
  • In this study, the quality of recycled aggregate for concrete was investigated as the number of recycled aggregate crushing cycles, grinder and crusher, peeling and crushing. First, the quality of density, absorption ratio and solid content was improved as the separation distance decreased and the number of crushing increased, depending on the number of crushing of recycled aggregate and the distance between mantle and cone cave. The quality of density, absorption ratio and solid content was improved as the wire mesh used in striking plate and the number of hammers increased, depending on the type of striking plate and the number of hammers.

Effect of utilizing pressurized ring beam system in modern rock TBM: I. Numerical study (현대식 Rock TBM에서 가압형 링빔의 효과 연구: I. 수치해석적 연구)

  • Kwak, Yun-Suk;Kang, Gi-Don;Kim, Do-Hoon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.1
    • /
    • pp.55-77
    • /
    • 2012
  • A Modern Rock TBM is a tunnel excavation method combining the conventional tunnelling method with the mechanized tunnelling method. It is a hybrid system that excavates a tunnel with TBM and supports the ground by ring beam, wire mesh, rock bolt, shotcrete, i.e., conventional tunnelling method. In the Modern Rock TBM, a ring beam is similar to a steel rib in NATM in the way that uses H-beam. But using a ring beam is more effective than a steel rib because it is installed in a closed-circle. Therefore, improving the performance of the ring beam is a key factor for achieving tunnel stability. In this respect, this study introduces a pressurized ring beam that might be functioning more effectively by confining convergence during tunnel excavation. In order to verify the effect of the pressurized ring beam, a three-dimensional numerical analysis was conducted. The numerical analysis confirms an increase in the minimum principal stress and reduction in the plastic strain that triggers excessive displacement. The analysis result also indicates a decrease in the relative displacement occurring after installing the ring beam, and expansion in spacing between the ring beams.