• Title/Summary/Keyword: 와류 유발진동

Search Result 18, Processing Time 0.024 seconds

Numerical Analysis for Suppressing Unsteady Wake Flow on Wind Turbine Tower (풍력발전기 타워의 후류 불안정성 억제를 위한 수치연구)

  • Kim, Su-Yong;Jin, Do-Hyeon;Kim, Jong-Am
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.33-36
    • /
    • 2012
  • 풍력발전기 성능은 유동의 안정성과 풍속에 의해 결정되는데, 이때 유동 불안정성은 풍력발전기의 성능뿐만 아니라 구조적 문제를 함께 유발시킨다. 본 연구에서는 풍력발전기 타워 후류에서의 불안정성을 최소화시키기 위하여 타워 단면의 기초 형상설계 연구를 수행하였다. 기존의 풍력발전기 타워 형상에 부가 구조물을 설치함으로써 Karman vortex의 생성을 지연시키고 와류 간섭현상을 줄여 풍력발전기의 안정성을 증대시키고자 하였다. 이를 위해 다양한 타워 단면 형상에 대하여 양력계수 및 항력계수를 비교 분석하였다. 그 결과 반지름의 1/2 길이의 자유류 방향 tip과 splitter plate를 후방에 설치하는 것이 후류 불안정성을 억제하는데 가장 효율적인 것으로 나타났다.

  • PDF

A Study on the Characteristics of Lift Fluctuation Power Spectral Density on a Fin Tube in the Heat Recovery Steam Generator (배열회수 보일러 단일 휜튜브의 양력 변동 PSD 특성 연구)

  • Ha, Ji Soo;Lee, Boo Youn;Shim, Sung Hun
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.211-216
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted by using single cicular tube or circular tube array and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. From the present study, the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared. For the previous mentioned purpose, the present CFD analysis introduced a single fin tube and calculated with the unsteady laminar flow over the single fin tube. The characteristics of vortex shedding and lift fluctuation over the fin tube was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift PSD over a single fin tube was established from the present CFD study.

A Study on Combustion Instability Characteristics of Hybrid Rocket using Liquefying Solid Fuel (용융성 고체 연료를 사용한 하이브리드 로켓의 연소 불안정 특성 연구)

  • Kim, Soo-Jong;Kim, Hak-Chul;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.469-473
    • /
    • 2010
  • In this study, combustion tests using liquefying fuels with fast regression rate were performed. The chamber pressure oscillation was analyzed and hazards of combustion instabilities were examined. In case of Liquefying fuel with fast regression rate, the amplitude of chamber pressure oscillation was increased compared to the polymeric fuels. However, the critical combustion instability can hardly occur in liquefying fuel. This is because the rapid change of inner chamber diameter limits the amplification of chamber pressure oscillation. The chamber pressure oscillation due to the large increase of fuel production and the vortex shedding in pre-chamber violently occurs during combustion using single-port axial injector.

  • PDF

A Study on Separation Control by Local Suction in Front of a Hemisphere in Laminar Flow (층류경계층 내 반구 전방의 국부적인 흡입에 의한 표면 박리 제어)

  • Kang, Yong-Duck;An, Nam-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.92-100
    • /
    • 2018
  • Vortical systems are considered a main feature to sustain turbulence in a boundary layer through interaction. Such turbulent structures result in frictional drag and erosion or vibration in engineering applications. Research for controlling turbulent flow has been actively carried out, but in order to show the effect of vortices in a turbulent boundary layer, it is necessary to clarify the mechanism by which turbulent energy is transferred. For this purpose, it is convenient to demonstrate and capture phenomena in a laminar boundary layer. Therefore, in this study, the interactions of disturbed flow around a hemisphere on a flat plate in laminar flow were analyzed. In other words, a street of hairpin vortices was generated following a wake region formed after flow separation occurred over a hemisphere. Necklace vortices surrounding the hemisphere also appeared due to a strong adverse pressure gradient that brought high momentum fluid into the wake region thereby leading to an increase in the frequency of hairpin vortices. To mitigate the effect of these necklace vortices, local suction control was applied through a hole in front of the hemisphere. Flow visualization was recorded to qualitatively determine flow modifications, and hot-film measurements quantitatively supported conclusions on how much the power of the hairpin vortices was reduced by local wall suction.

Development of an Intelligent Active Trailing-edge Flap Rotor to Reduce Vibratory Loads in Helicopter (헬리콥터의 진동하중 저감을 위한 지능형 능동 뒷전 플랩 로터 제어 시스템 개발)

  • Lee, Jae-Hwan;Choe, Jae-Hyeok;Shin, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.492-497
    • /
    • 2011
  • Helicopter uses a rotor system to generate lift, thrust and forces, and its aerodynamic environment is generally complex. Unsteady aerodynamic environment arises such as blade vortex interaction. This unsteady aerodynamic environment induces vibratory aerodynamic loads and high aeroacoustic noise. Those are at N times the rotor blade revolutions (N/rev). But conventional rotor control system composed of pitch links and swash plate is not capable of adjusting such vibratory loads because its control is restricted to 1/rev. Many active control methodologies have been examined to alleviate the problem. The blade using active control device manipulates the blade pitch angle at arbitrary frequencies. In this paper, Active Trailing-edge Flap blade, which is one of the active control methods, is designed to modify the unsteady aerodynamic loads. Active Trailing-edge Flap blade uses a trailing edge flap manipulated by an actuator to change camber of the airfoil. Piezoelectric actuators are installed inside the blade to manipulate the trailing edge flap.

  • PDF

Wind Tunnel Test Study on the Characteristics of Wind-Induced Responses of Tall Buildings with Openings (중공부(中空部)를 가진 고층건축물(高層建築物)의 풍응답(風應答) 특성(特性)에 관한 풍동실험(風洞實驗) 연구(硏究))

  • Kim, Dong Woo;Kil, Yong Sik;Ha, Young Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.499-509
    • /
    • 2005
  • The excessive wind-induced motion of tall buildings most frequently result from vortex-shedding-induced across-wind oscillations. This form of excitation is most pronounced for relatively flexible, lightweight, and lightly damped high-rise buildings with constant cross-sections. This paper discusses the aerodynamic means ofmitigating the across-wind vortex shedding induced in such situations. Openings are added in both the drag and lift directions in the buildings to provide pressure equalization. Theytend to reduce the effectiveness of across-wind forces by reducing their magnitudes and disrupting their spatial correlation. The effects of buildings with several geometries of openings on aerodynamic excitations and displacement responses have been studied for high-rise buildings with square cross-sections and an aspect ratio of 8:1 in a wind tunnel. High-frequency force balance testshave been carried out at the Kumoh National University of Technology using rigid models with 24 kinds of opening shapes. The measured model's aerodynamic excitations and displacement were compared withthose of a square cylinder with no openings to estimate the effectiveness of openings for wind-induced oscillations. From these results, theopening shape, size, and location of buildings to reduce wind-induced vortex shedding and responses were pointed out.

Pressure Drop Variations and Structural Characteristics of SMART Nuclear Fuel Assembly Caused by Coolant Flow (냉각유동에 의한 SMART 핵연료집합체의 압력강하변화 및 구조특성)

  • Jin, Hai Lan;Lee, Young Shin;Lee, Hyun Seung;Park, Nam Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1653-1661
    • /
    • 2012
  • In this study, the pressure drop changes and structural characteristics of a SMART rod bundle under the effect of a coolant were investigated. The turbulence model of the BSL Reynolds stress model was used to model the coolant flow, and a fluid solid interaction simulation was conducted. First, fuel rod vibration analysis was performed to confirm the natural frequency of the fuel rod, which was supported by spacer grid assemblies, and this was compared with experimental results. From the experimental results, the natural frequency was found to be 48 Hz, and the error compared with the simulation results was 2%. The pressure drop at the rod bundle was calculated and compared with the experimental data; it showed an error of 8%, demonstrating the simulation accuracy. In the flow analysis, the flow velocity and secondary flow at different domains were calculated, and vortex generation was also observed. Finally, through the fluid solid interaction analysis, the fuel rod displacements caused by flow-induced vibrations were calculated. Then, calculated displacement PSD at maximum displacement happed point.

Development of a Cartesian-based Code for Effective Simulation of Flow Around a Marine Structure - Integration of AMR, VOF, IBM, VIV, LES (효율적인 해양구조물 유동 해석을 위한 직교좌표계 기반의 코드 개발 - AMR, VOF, IBM, VIV, LES의 통합)

  • Lee, Kyongjun;Yang, Kyung-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.409-418
    • /
    • 2014
  • Simulation of flow past a complex marine structure requires a fine resolution in the vicinity of the structure, whereas a coarse resolution is enough far away from it. Therefore, a lot of grid cells may be wasted, when a simple Cartesian grid system is used for an Immersed Boundary Method (IBM). To alleviate this problems while maintaining the Cartesian frame work, we adopted an Adaptive Mesh Refinement (AMR) scheme where the grid system dynamically and locally refines as needed. In this study, We implemented a moving IBM and an AMR technique in our basic 3D incompressible Navier-Stokes solver. A Volume Of Fluid (VOF) method was used to effectively treat the free surface, and a recently developed Lagrangian Dynamic Subgrid-scale Model (LDSM) was incorporated in the code for accurate turbulence modeling. To capture vortex induced vibration accurately, the equation for the structure movement and the governing equations for fluid flow were solved at the same time implicitly. Also, We have developed an interface by using AutoLISP, which can properly distribute marker particles for IBM, compute the geometrical information of the object, and transfer it to the solver for the main simulation. To verify our numerical methodology, our results were compared with other authors' numerical and experimental results for the benchmark problems, revealing excellent agreement. Using the verified code, we investigated the following cases. (1) simulating flow around a floating sphere. (2) simulating flow past a marine structure.