• Title/Summary/Keyword: 와류 격자법

Search Result 30, Processing Time 0.02 seconds

Aeroacoustics Analysis and Noise Reduction of Dual Type Combined Fan using Lattice-Boltzmann Method (Lattice-Boltzmann Method를 이용한 이중구조팬의 공력소음 해석 및 저감)

  • Kim, Wootaek;Ryu, Minhyung;Kim, Jinwook;Ho, Sunghwan;Cho, Leesang;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.381-390
    • /
    • 2016
  • In this study, aeroacoustic characteristics of combined fan are investigated and noise was reduced by applying Serrated Trailing Edge which is known as the method to reduce fan noises. Unsteady CFD (Computational Fluid Dynamics) analysis was carried out using Lattice Boltzmann Method(LBM) to figure out the combined fan's aeroacoustics and experimental results was used to verify simulation results. Results show that different BPFs are generated at the each inner fan and outer fan on the different frequency while Blade Passing Frequency(BPF) of general fans is constant on the entire frequency range. Boundary vortex and vortex shedding are suppressed or dispersed by applying the Serrated Trailing Edge to the inner fan. Furthermore, broadband noise and fan's torque are reduced.

Potential Flow Analysis for a Ship with a Flow Control Plate near the Stern (선미부에 유동제어판을 부착한 선박에 대한 포텐셜 유동해석)

  • Choi, Hee-Jong;Chun, Ho-Hwan;Yoon, Hyun-Sik;Lee, In-Won;Park, Dong-Woo;Kim, Don-Jean
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.587-594
    • /
    • 2009
  • In the paper the effect of a stern-plate attached to a ship was taken into account. The relationship between the trim angle of a ship and the wave-resistance coefficient induced by the a stern-plate was studied using the potential flow analysis method. Numerical algorithm was described using the panel method and the vortex lattice method(VLM) to simulate the flow phenomena around a ship. The non-linearity of the free surface boundary conditions were considered using the iterative method and the IGE-GMRES(Incomplete Gaussian Elimination-The Generalized Minimal RESidual) algorithm was adopted to solve the linear equation at each iterative step. Numerical calculations were carried out to investigate the validity of the adopted algorithm using KCS(KRISO 3600 TEU Container) hull. Possible cases for attachment of the plate were checked. The results showed that the numerical algorithm could be physically appropriate.

Evaluation of Flutter Velocity of Bridge Deck Section using Distributed Computing Environment (분산형 전산환경을 활용한 교량 거더의 플러터 발생풍속 산정)

  • Lee, Kuen-Bae;Kim, Chongam
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.75-75
    • /
    • 2011
  • 본 논문에서는 진동중인 교량 거더에 작용하는 풍하중을 산정하고 그에 따른 플러터 발생풍속을 예측하기 위하여 분산형 전산환경을 활용한 수치해석 연구를 수행하였다. 분산형 전산환경은 웹 포탈을 기반으로 수치해석 환경을 제공하는 수치풍동 시스템으로서, 전산유체역학(CFD : Computational Fluid Dynamics)에 대한 전문지식이 부족한 사용자들도 격자생성, 수치해석자를 이용한 계산, 가시화 등의 전 과정을 편리하게 수행할 수 있는 차세대 토목분야 연구 환경이다. 본 시스템은 그리드스피어(GfidSphere)를 기반으로 구성되었으며, 기본적으로 사용자 관리, 세션 관리, 그룹 관리, 레이아웃 관리 등을 제공하여 사용자가 포탈을 통해서 다양한 서비스를 쉽게 사용할 수 있는 환경을 구축하도록 도와준다. 수치해석을 위한 유체 지배방정식은 2차원 비정상 비압축성 RANS(Reynolds-Averaged Navier-Stokes) 방정식이며, pseudo compressibility 방법을 적용하였다. 비정상 유동장을 해석하기 위하여 이중시간 전진법(dual time stepping)을 사용하였으며, 수렴가속화를 위해 Multi-grid 기법을 적용하였다. 또한 난류 유동장 해석을 위해서 $k-{\omega}$ SST 난류 모델을 사용하였으며, 난류 천이 과정에서의 유동을 모사하기 위하여 Total stress limitation 방법을 적용하였다. 교량 거더의 연직과 회전방향의 2자유도 움직임을 모사하기 위하여 동적격자 기법을 도입하였다. 교량 거더 주변의 비정상 유동해석 결과를 통해, 거더 표면에서 떨어져나가는 크고 작은 와류의 영향으로 양력 및 모멘트 계수 그래프가 중첩된 진폭과 주기를 갖고 주기적으로 나타나는 것을 확인할 수 있었다. 또한 계산된 비정상 공기력을 적용한 2자유도 플러터 방정식을 통하여 플러터 발생풍속을 산정하였다. 최종적으로 본 연구에서 계산된 결과의 타당성을 검증하기 위하여 수치적으로 구한 플러터 발생풍속과 기존의 실험 및 수치해석 결과를 비교하였으며, 결과는 잘 일치하였다.

  • PDF

Multidisciplinary UAV Design Optimization Implementing Multi-Fidelity Analysis Techniques (다정밀도 해석기법을 이용한 무인항공기 다분야통합 최적설계)

  • Lee, Jae-Woo;Choi, Seok-Min;Van, Nguyen Nhu;Kim, Ji-Min;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.695-702
    • /
    • 2012
  • In this study, Multi-fidelity analysis is performed to improve the accuracy of analysis result during conceptual design stage. Multidisciplinary Design Optimization(MDO) method is also considered to satisfy the total system requirements. Low-fidelity analysis codes which are based on empirical equations are developed and validated for analyzing the Unmanned Aerial Vehicle(UAV) which have unconventional configurations. Analysis codes consist of initial sizing, aerodynamics, propulsion, mission, weight, performance, and stability modules. Design synthesis program which is composed of those modules is developed. To improve the accuracy of the design method for UAV, Vortex Lattice Method is used for the strategy of MFA. Multi-Disciplinary Feasible(MDF) method is used for MDO technique. To demonstrate the validity of presented method, the optimization results of both methods are compared. According to those results, the presented method is demonstrated to be applicable to improve the accuracy of the analyses during conceptual design stage.

Numerical Prediction of Acoustic Load Around a Hammerhead Launch Vehicle at Transonic Speed (해머헤드 발사체의 천음속 음향하중 수치해석)

  • Choi, Injeong;Lee, Soogab
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.41-52
    • /
    • 2021
  • During atmospheric ascent of a launch vehicle, airborne acoustic loads act on the vehicle and its effect becomes pronounced at transonic speed. In the present study, acoustic loads acting on a hammerhead launch vehicle at a transonic speed have been analyzed using ��-ω SST based IDDES and the results including mean Cp, Cprms, and PSD are compared to available wind-tunnel test data. Mesh dependency of IDDES results has been investigated and it has been concluded that with an appropriate turbulence scale-resolving computational mesh, the characteristic flow features around a transonic hammerhead launch vehicle such as separated shear flow at fairing shoulder and its reattachment on rear body as well as large pressure fluctuation in the region of separated flow behind the boat-tail can be predicted with reasonable accuracy for engineering purposes.

Analysis of Thrust Characteristics with Propeller Shape for UAV (무인항공기용 프로펠러 형상에 따른 추력특성 해석)

  • Soohyeon Lee;Hwankee Cho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.4
    • /
    • pp.57-64
    • /
    • 2022
  • A study on propllers for unmaned aerial vehicles is conducted using the open softwares. Since the shape of the propeller is closely related to the thurst characteristics of the propulsion system, adopting an appropriate propeller will significantly reflect stable aerodynamic performances. In this study, propellers for unmanned aerial vehicles were modeled by using OpenVSP and Propel for comparison, the thrust characteristics according to the number of blades and the diameter of the propeller were analyzed. In addition, the tendency of thrust characteristics according to various propeller pitch angles was confirmed. Based on the analysis results of this study, the applicability of the propeller shape to the design of the unmanned aerial vehicle was confirmed. It is shownthat the analysis results of this study can be utilized when modeling the propeller shape in research such as a conceptual design of unmanned aerial vehicle. In this case, it should be noted that OpenVSP does not involve the viscous effect of air.

Static Aeroelastic Analysis of Hingeless Rotor System in Hover Using Free-Wake Method (자유후류기법을 이용한 무힌지 로터 시스템의 정지비행시 정적 공탄성 해석)

  • Yoo, Seung-Jae;Lim, In-Gyu;Lee, In;Kim, Do-Hyung;Kim, Doeg-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.156-162
    • /
    • 2008
  • The static aeroelastic analysis of composite hingeless rotor blades in hover was performed using free-wake method. Large deflection beam theory was applied to analyze blade motions as a one-dimension beam. Anisotropic beam theory was applied to perform a cross-sectional analysis for composite rotor blades. Aerodynamic loads were calculated through a three-dimensional aerodynamic model which is based on the unsteady vortex lattice method. The wake geometry in hover was described using a time-marching free-wake method. Numerical results of the steady-state deflections for the composite hingeless rotor blades were presented and compared with those results based on two-dimensional quasi-steady strip theory and prescribed wake method. It was shown that wakes affect the steady-state deflections.

Development of a Cartesian-based Code for Effective Simulation of Flow Around a Marine Structure - Integration of AMR, VOF, IBM, VIV, LES (효율적인 해양구조물 유동 해석을 위한 직교좌표계 기반의 코드 개발 - AMR, VOF, IBM, VIV, LES의 통합)

  • Lee, Kyongjun;Yang, Kyung-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.409-418
    • /
    • 2014
  • Simulation of flow past a complex marine structure requires a fine resolution in the vicinity of the structure, whereas a coarse resolution is enough far away from it. Therefore, a lot of grid cells may be wasted, when a simple Cartesian grid system is used for an Immersed Boundary Method (IBM). To alleviate this problems while maintaining the Cartesian frame work, we adopted an Adaptive Mesh Refinement (AMR) scheme where the grid system dynamically and locally refines as needed. In this study, We implemented a moving IBM and an AMR technique in our basic 3D incompressible Navier-Stokes solver. A Volume Of Fluid (VOF) method was used to effectively treat the free surface, and a recently developed Lagrangian Dynamic Subgrid-scale Model (LDSM) was incorporated in the code for accurate turbulence modeling. To capture vortex induced vibration accurately, the equation for the structure movement and the governing equations for fluid flow were solved at the same time implicitly. Also, We have developed an interface by using AutoLISP, which can properly distribute marker particles for IBM, compute the geometrical information of the object, and transfer it to the solver for the main simulation. To verify our numerical methodology, our results were compared with other authors' numerical and experimental results for the benchmark problems, revealing excellent agreement. Using the verified code, we investigated the following cases. (1) simulating flow around a floating sphere. (2) simulating flow past a marine structure.

Unsteady Wall Interference Effect on Flows around a Circular Cylinder in Closed Test-Section Wind Tunnels (폐쇄형 풍동 시험부내의 원형 실린더 유동에 대한 비정상 벽면효과 연구)

  • Kang, Seung-Hee;Kwon, Oh-Joon;Hong, Seung-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.1-8
    • /
    • 2005
  • For study on the unsteady wall interference effect, flows around a circular cylinder in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The computed results showed that the unsteady pressure gradient over the cylinder is enhanced by the wall interference, and as a result the fluctuations of lift and drag are augmented. The drag is further increased because of the lower base pressure. The vortex shedding frequency is also increased by the wall interference. The pressure on the test section wall shows the harmonics having the shedding frequency contained in the wall effect.

A Study on the Development of Low-Altitude and Long-Endurance Solar-Powered UAV from Korea Aerospace University (2) - Flight Control and Guidance of Solar Powered UAV - (한국항공대학교 저고도 장기체공 태양광 무인기 개발에 관한 연구 (2) - 태양광 무인기 비행제어 및 유도항법 -)

  • Kim, Taerim;Kim, Doyoung;Jeong, Jaebaek;Moon, Seokmin;Kim, Yongrae;Bae, Jae-Sung;Park, Sanghyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.479-487
    • /
    • 2022
  • This paper presents the control and guidance algorithm of a KAU-SPUAV(Korea Aerospace University - Solar Powered Unmanned Aerial Vehicle) which is designed and developed in Korea Aerospace University. Aerodynamic coefficients are calculated using the vortex-lattice method and applied to the aircraft's six degrees of freedom equation. In addition, the thrust and torque coefficients of the propeller are calculated using the blade element theory. An altitude controller using thrust was used for longitudinal control of KAU-SPUAV to glide efficiently when it comes across the upwind. Also describes wind estimation technic for considering wind effect during flight. Finally, introduce some guidance laws for endurance, mission and coping with strong headwinds and autonomous landing.