• Title/Summary/Keyword: 와류통과주파수

Search Result 4, Processing Time 0.015 seconds

Numerical Investigation on the Mechanism of Mode Transition in Axi-symmetric Supersonic Jet Screech (축대칭 초음속 제트에서 스크리치 모드 전이현상의 수치적 연구)

  • Bin, Jong-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.790-797
    • /
    • 2010
  • Mode transition of the axi-symmetric screech tone in the low supersonic Mach number range from 1.0 to 1.20 is numerically analyzed. The axi-symmetric Navier-Stokes equations and the k-e turbulence model are solved in the cylindrical coordinate system. The dispersion-relation-preserving(DRP) scheme is applied for space discretization and the optimized four levels marching method are used for time integration. At low supersonic Mach numbers with an axi-symmetric A1 mode in the simulation, it is shown that acoustic propagation due to the nonlinear effects is seen in the lateral direction and the screech tone frequency is the same as the vortex passing frequency due to the generation of intense large-scale vortical motions.

A Study on the Flow Characteristics and Noise Predictions around the Shroud Fan using the Aero-acoustic Noise Model (공력소음 모델을 이용한 슈라우드 팬 주위의 유동특성 및 소음예측에 관한 연구)

  • Mo, Jang-Oh;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.19-25
    • /
    • 2009
  • InThe purpose of this work is to analyze the flow characteristics and aerodynamic noise generated from a shroud fan at a constant 2,100 rpm using LES and FW-H noise model provided in the commercial code, FLUENT. Velocity distributions around the shroud fan obtained by using FLUENT code show good agreement with experimental results. The sound pressure level is decreased by about 6 dB as the distance from the fan increases twice. The directivity at 1st BPF shows a tendency of increasing SPL toward the axis of rotation.

Aeroacoustics Analysis and Noise Reduction of Dual Type Combined Fan using Lattice-Boltzmann Method (Lattice-Boltzmann Method를 이용한 이중구조팬의 공력소음 해석 및 저감)

  • Kim, Wootaek;Ryu, Minhyung;Kim, Jinwook;Ho, Sunghwan;Cho, Leesang;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.381-390
    • /
    • 2016
  • In this study, aeroacoustic characteristics of combined fan are investigated and noise was reduced by applying Serrated Trailing Edge which is known as the method to reduce fan noises. Unsteady CFD (Computational Fluid Dynamics) analysis was carried out using Lattice Boltzmann Method(LBM) to figure out the combined fan's aeroacoustics and experimental results was used to verify simulation results. Results show that different BPFs are generated at the each inner fan and outer fan on the different frequency while Blade Passing Frequency(BPF) of general fans is constant on the entire frequency range. Boundary vortex and vortex shedding are suppressed or dispersed by applying the Serrated Trailing Edge to the inner fan. Furthermore, broadband noise and fan's torque are reduced.

An Alysis of Flow and Noise Source for Vacuum Cleaner Centrigugal Fan (진공청소기 원심홴의 유동과 소음원 해석)

  • 전완호;유기완;이덕주;이승갑
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.99-106
    • /
    • 1997
  • Centrigugal fans are widely used due to their ability to achieve relatively high pressure ratios in a short axial distance compared to axial fans. Because of their widespread use, the noise generated by these machines causes one of serious problems. In general, centrigugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the periodic flow discharged radially from the impeller and the stator blades or the cutoff. But in vacuum cleaner fan the noise is dominated by not only the discrete tones of BPF but also broadband frequencies. In this study we investigate the mechanism of broadband noise and predict for the unsteady flow field and the acoustic pressure field associated with the centrifugal fan. DVM(discrete vortex method) is used to calculates the flow field and the Lowson's method is used to predict the acoustic pressures. From the results we find that the broadband noise of a circular casing centrifugal fan is due to the unsteady force fluctuation around the impeller blades related to the vortex shedding. The unsteady forces associated with the shed vortices at impeller and related to the interactions to the diffuser and the exit.

  • PDF