• Title/Summary/Keyword: 와류속도

Search Result 194, Processing Time 0.027 seconds

Passive Control of the Vortex Shedding behind a Rectangular Cylinder Near a Wall (벽면에 근접한 사각주 후면의 와류 유동장 수동제어)

  • Lee, Bo-Sung;Kim, Tae-Yoon;Lee, Do-Hyung;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.16-22
    • /
    • 2004
  • Unsteady vortex shedding behind a rectangular cylinder near a wall influences both increasing of drag and dynamic stability of heavy vehicle, bridge or building. Incompressible Averaged Navier-Stokes equation with modified ${\varepsilon}-SST$ turbulence model is adapted for investigating the flow field between the rectangular cylinder and the wall. In case the vortex shedding happens, not only the averaged maximum velocity is higher than other cases, but the position of the maximum velocity is closer to the lower surface of rectangular cylinder. On this study, it is confirmed that the vortex shedding behind a rectangular cylinder can be suppressed by the passive control method added by horizontal and vertical fences to the lower surface of rectangular cylinder.

Aerodynamic Performance Prediction of Horizontal Axis Wind Turbine by Vortex Lattice Method (와류 격자법에 의한 수평축 풍력터빈의 공기역학적 성능예측)

  • 유능수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1264-1271
    • /
    • 1990
  • The vortex lattice method was adopted to predict the aerodynamic performance of a horizontal axis wind turbine. For this simulation. the rotor blade was divided into many panels both in chordwise and spanwise direction and then replaced by horseshoe vortices. The wake was divided into two parts of near wake and far wake : the near wake was assumed as helical vortex line elements and the far wake was modeled by semi-infinite circular vortex cylinder. The induced velocity components were calculated by the Biot-Savart law. By this way the power coefficient was obtained and represented as a function of the tip speed ratio. The numerical results obtained were compared with those of the other methods and experimental results and showed good agreement with experimental results.

PIV Measurement of Pulsatile Flows in 3D Curved Tubes Using Refractive Index Matching Method (3차원 곡관에서의 굴절률 일치법을 이용한 맥동 유동의 PIV 측정)

  • Hong, Hyeon Ji;Ji, Ho Seong;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.511-517
    • /
    • 2016
  • Three-dimensional models of stenosis blood vessels were prepared using a 3D printer. The models included a straight pipe with axisymmetric stenosis and a pipe that was bent $10^{\circ}$ from the center of stenosis. A refractive index matching method was utilized to measure accurate velocity fields inside the 3D tubes. Three different pulsatile flows were generated and controlled by changing the rotational speed frequency of the peristaltic pump. Unsteady velocity fields were measured by a time-resolved particle image velocimetry method. Periodic shedding of vortices occurred and moves depended on the maximum velocity region. The sizes and the positions of the vortices and symmetry are influenced by mean Reynolds number and tube geometry. In the case of the bent pipe, a recirculation zone observed at the post-stenosis could explain the possibility of blood clot formation and blood clot adhesion in view of hemodynamics.

A study on the effect of agitation speeds for the optimization of manufacturing process of autonomic microcapsules (자가치료용 마이크로캡슐 제조공정 최적화를 위한 교반속도 영향 연구)

  • Yun, Seong-Ho;Kim, Sang-Deok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.51-59
    • /
    • 2006
  • The physical characteristics of autonomic microcapsules manufactured with various agitation speeds in a stirred tank were observed experimentally by a particle size analyzer and an optical microscope. The flow characteristics in a stirred tank were also investigated through a 3-dimensional numerical simulation to understand the manufacturing process of autonomic microcapsules. According to the results, we found that the agitation speed was the important factor to determine the sizes of microcapsules. The impeller-induced flow allowed the jet and tip-vortex pair components in the mixed fluid of a stirred tank. The vorticity around the blades in the impeller was increased as increasing the agitation speed. In addition, the size of autonomic microcapsules was strongly affected on the small scale mixing pattern such as a tip-vortex pair.

Velocity Field Estimation using Karman Vortex Images (칼만 와류(渦流) 영상을 이용한 속도장 추정)

  • Kim, Hyeong-kwon;Kim, Jin-woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1327-1333
    • /
    • 2018
  • Numerical analysis has the advantage that no actual flow pathways need to be formulated, making this technique especially useful for simulation analysis such as pathway design. However, it does require that the complete physical parameters of the fluid and the complete boundary conditions be known. If any of them are unknown, either the calculation will become impossible, or even if the calculation does converge, the reliability of the result will be low. Therefore, a means of more accurate acquisition of flow information is required. In this paper, we present techniques for estimating flow field from a constraint equation for image information and velocity field, based on the image intensity changes accompanying the motion of dye in waterway. In the equation, we entered a stabilizing term to suppress estimation error. We show the effectiveness of our method through experiments with generated and real images of a Karman vortex.

A numerical investigation on the oblique shock wave/vortex interaction (경사충격파와 와류간의 상호작용에 관한 수치적 연구)

  • Moon, Seong-Mok;Kim, Chong-Am;Rho, Oh-Hyun;Hong, Seung-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.20-28
    • /
    • 2004
  • For the prediction on the onset of oblique shock wave-induced vortex breakdown, computational studies on the Oblique Shock wave/Vortex Interaction (OSVI) are conducted and compared with both experimental results and analytic mode1. A Shock-stable numerical scheme, the Roe scheme with Mach number-based function (RoeM), and a two-equation eddy viscosity-transport approach arc used for three-dimensional turbulent flow computations. The computational configuration is identical to available experiment, and we attempt to ascertain the effect of parameters such as a vortex strength, streamwise velocity deficit, and shock strength at a freestream Mach number of 2.49. Numerical simulations using the k-w SST turbulence model and suitably modeled vortex profiles are able to accurately reproduce many fine features through a direct comparison with experimental observations. The present computational approach to determine the criterion on the onset of oblique shock wave-induced vortex breakdown is found to be in good agreement with both the experimental result and the analytic prediction.

Papers : Effect of Sideslip on the Vortex Flow over a Delta Wing (논문 : 옆미끄럼각이 삼각 날개 와류에 미치는 영향)

  • Son,Myeong-Hwan;Lee,Gi-Yeong;Baek,Seung-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • The effects of sideslip on the vortex over a delta wing was investigated experimentallu at a free strean velocity of 40 m/sec, corresponding to a Reynolds number of 1.76$\times$$10^6$, based on the root chord. The angles of attack ranged from $16{^{\circ}}$ to $28{^{\circ}}$, and the sideslip angles treated were $0{^{\circ}}$, $-10{^{\circ}}$, and $-20{^{\circ}}$. It was observed that the sideslip decreased the strengths of the vortices of both windward and leeward sides of the wing, and promoted the vortex breakdown on the windward side. At sideslip angle of $-10{^{\circ}}$, the vortex strength of leeward side was increased as the angle of attack increased. This asymmetric development and breakdown of vortices in sideslip condition would cause an abrubt change of the rolling moment at a high angle of of attack, which could be considered as a rolling moment instability.

A Study on the Flow Characteristics in Tube Banks due to the Upstream Periodic Velocity Fluctuation (전열 관군에서 전방류의 주기적인 속도 변동에 따른 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.446-451
    • /
    • 2020
  • Flow induced vibration in a heat exchanger may cause damage to piping. The purpose of this study was to compare the characteristics of vortex shedding behavior through the circular tube banks at several tube locations, No.1, No. 10, and No. 19, with respect to time when the flow velocity of the inlet is constantly and periodically fluctuating.(60) The time characteristics of lift and the PSD characteristics were also investigated. In the case of periodic inlet flow velocity, strong vortex occurred at some time and after that time, a weak vortex was generated through the tube banks simultaneously. In the case of constant inlet flow velocity, the lift fluctuating frequency was 37.25Hz and that at the No. 19 tube was 18.63Hz and near 50Hz. In the case of periodic inlet flow velocity, the lift fluctuating frequency was 37.25Hz and 18.63Hz. The lift fluctuating frequency at No. 19 tube was observed broadly from 20Hz and 50Hz.

A numerical simulation of flow around an impulsively translating two dimensional circular cylinder using the diffusion vortex method (순간적으로 병진운동하는 2차원 원형실린더 주위 유동장의 확산와류방법 연구)

  • Seo, Ho-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.9-15
    • /
    • 2004
  • In this study the development of the two dimensional flowfield around an impulsively translated circular cylinder is numerically simulated using the diffusion vortex method. A detailed streamline pattern of fore wake and main wake of Re=1200, 9500 flowfields are investigated. The results of streamline pattern, the size of main wake and the axial velocities along the rear symmetry axis of the circular cylinder show good agreement with the reported experimental results. The long term wake delvelopment for Re=1200 flowfield was calculated up to ${\tau}=50$. The vortex shedding frequency shows the similar value as that of reported.

Combustion Characteristics associated with a Swirl Chamber and Nozzle Length of Coaxial Swirl Injectors (동축스월분사기에서 와류실 유무 및 노즐길이에 따른 연소특성 변화)

  • Lim Byoung-Jik;Seo Seong-Hyeon;Choi Hwan-Seok;Choi Young-Hwan;Lee Seok-Jin;Kim Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.335-340
    • /
    • 2005
  • A study on the variation of combustion characteristics by injector geometries was conducted. Coaxial swirl injectors were used. Existence of swirl chamber and variation of a nozzle length become key parameters. Injectors were identified as open, closed and mixed type by existence of swirl chamber. Variation of nozzle length was made extruding the both nozzle along the axis while other design parameters remain the same. A uni-element combustor with ablative material liner and a water cooled nozzle made by oxygen free copper with outer stainless steel casing were used.

  • PDF