• Title/Summary/Keyword: 온천천

Search Result 69, Processing Time 0.023 seconds

Distribution of Epilithic Diatom Assemblages in an Urban Stream in Busan: Effected of Urban Climatic Conditions (도시 기후 변화가 도시하천의 부착규조류 군집에 미치는 영향)

  • Lee, Youjung;Kim, Kyungsun;Cho, Jeonggoo
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.2
    • /
    • pp.143-151
    • /
    • 2017
  • This study illustrates changes in the epilithic diatom assemblages in response to urban climatic conditions. We further assess the impact of abnormal urban climate to the urban stream environment. Epilithic diatoms, water chemical and physical variables were sampled every quarter, and assessed at 3 Oncheon stream sites, for a period of two years(from 2013~2014). The variation of physiochemical properties such as BOD, COD, T-N and T-P, show that the water quality was strongly influenced with long periods of drought and flood disturbance. Epilithic diatom assemblages were separated along the stream sites; however, the physical disturbance from urban drought and stormwater changed the composition of diatom assemblages instead of decreasing the taxonomic richness. Thus, our results suggest that epilithic diatom assemblages are altered in response to urban climatic changes, resulting in variations of stream conditions. Hence, strategies of climate change adaptation are required when considering urban stream environments.

Eco-Hydrologic Assessment of Maintenance Water Supply on Oncheon Stream (온천천 유지용수 공급에 따른 생태수문환경 변화분석)

  • Jang, Ju-Hyoung;Kim, Sang-Dan;Sung, Ki-June;Shin, Hyun-Suk
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.973-983
    • /
    • 2007
  • The eco-hydrologic effects of maintenance water supply on Oncheon stream are studied using hydrologic, hydraulic and ecologic models. SWMM (Storm Water Management Model) is used for long-term simulation of runoff quantity and water quality from Oncheon stream watershed. Using the output hydrologic variables from SWMM, HEC-RAS (River Analysis System) is then used to simulate the hydraulics of water flow through Oncheon stream channels. Such hydrologic, hydraulic and water quality output variables from SWMM and HEC-RAS are served as input data to execute PHABSIM (Physical Habitat Simulation) for the purpose of predicting the micro-habitat conditions in rivers as a function of stream flow and the relative suitability of those conditions to aquatic life. It is observed from the PHABSIM results that the weighted usable area for target fishes has the maximum value at $2m^3/s$ of instream flow. However, mid and down stream areas that have concrete river bed and covered region are unsuitable for fish habitat regardless of instream flow increment. The simulation results indicate that the simple maintenance water supply is limited in its effect to improve the ecological environment in Oncheon stream. Therefore, it is imperative to improve water quality and to recover habitat conditions simultaneously.

Characteristics of Water and Sediment Qualities in the Oncheon Stream, Busan during Summer Rainy Season (부산 온천천의 하계 우수기 수질 및 퇴적물 환경 특성)

  • Lee, Young-Hyeong;Moon, Changho;Kang, Hyun-Jung;Choi, Seong-Ryul;Kim, Suk-Hyun
    • Journal of Environmental Science International
    • /
    • v.29 no.6
    • /
    • pp.659-672
    • /
    • 2020
  • Water and sediment qualities were investigated in the Oncheon Stream and at the Wondong bridge of the Suyoung River, during the summer rainy season, 2019. Dissolved oxygen (DO) showed the lowest levels at 4.7 and 5.0 m/L, and biogeochemical oxygen demand (BOD) showed the highest at 5.3 mg/L downstream where the tributary flows into the main river. Chemical oxygen demand (COD) increased from 2.0 to 5.9 mg/L on average as it flowed downstream, The COD/BOD ratio decreased gradually as it flowed downstream, reaching 1.0. However, COD/BOD ratio at the Wondong bridge was 5.8-22.2, indicating that easily biodegradable and non-biodegradable organic matter flows into the Oncheon Stream and Suyoung River, respectively. Total nitrogen (T-N) / total phosphorus (T-P) ratio tended to decrease from 72 to 21 as it flowed downstream, measuring 71 to 86 at the Wondong bridge. The water quality index (WQI) generally improved better than grade IV after heavy rainfalls. However, DO and T-P were the parameters that deteriorated the WQI. Ignition loss (IL), COD, T-N, and T-P of sediments had distribution of 1.44 ± 1.01%, 0.35 ± 0.16%, 43 ± 63 mg/kg, and 10.9 ± 21.9 mg/kg, respectively. These were several times lower than the annual averages of IL, T-N, and T-P in 2017 before the dredging project was conducted in the first half of 2018.

Identification of Red Tide-causing Organism and Characteristics of Red Tide Occurrence in the Oncheon Down Stream, Busan (온천천 하류 적조 원인생물의 동정 및 발생 특성)

  • Kim, Mi-hee;Ji, Hwa-seong;Cho, Jeong-goo;Cho, Sunja
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.285-292
    • /
    • 2018
  • This study was performed in order to identify the red tide-causing organism and to understand the characteristics of the water quality during the winter of 2015 and 2016 in the Oncheon stream, a tidal river in Busan, where red tide often occurs in the wintertime. Two sites were selected on the stream and the surface water was sampled a total of 28 times during the experimental period. Twelve water quality characteristics, including water temperature, pH, DO, COD, total-N (T-N), total-P (T-P), and salinity were analyzed in order to test water quality. The cell numbers of cryptomonads were counted directly by microscopic observation. The nucleotide sequences of the partial 28S rRNA gene and psbA gene from metagenomic DNA, derived from each sampling site, were analyzed. According to the results, the alga most responsible for the bloom was identified as Teleaulax OC1 sp., which belongs to the cryptomonads. Three items of chl-a, pH, and DO were positively correlated with the cell numbers of the cryptomonads counted at the upper stream of the tidal area (St 1) while eight items of chl-a, TOC, BOD, total-N, COD, SS, pH, and DO were positively correlated with the cells located at the junction between the stream and Su-young river (St 2) in the order.

Characteristics of Aquatic Environment in Close-to-Nature Onchun Stream - Before and After the Flowing of the Nakdong River - (자연형 하천 온천천의 물환경 특성 - 하천유지 용수 공급 전, 후 -)

  • Kwon, Dong-Min;Son, Jun-Won;Yoo, Eun-Hee;Jeong, Jae-Won;Yun, Na-Na;Hwang, In-Jung;Kwon, Ki-Won;Bin, Jae-Hun;Cheigh, Hong-Sik
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.831-838
    • /
    • 2007
  • In order to improve the water environment at urban streams in Korea, several river restoration projects have been initiated for past few years. This study evaluates the impact of diverting water application at the riverhead of Onchun stream through the monitoring program for several water quality and ecological parameters. Various water quality parameters and ecological item such as benthic macroinverterates has been investigated between 09/05 and 12/06. Analysis indicates that the application of diverting water from Nakdong river to Onchun stream distinctly improved several water quality parameters such as, PH, BOD, TN, TP and concentrations of heavy metals. Low flow augmentation also improve ecological indicies such as the diversity index of benthic macroinvertebrates. Generally speaking, releasing addition water from head water of Onchun stream improves various water environmental characteristics.

Nonpoint Removal Contribution Ratio Analysis of Nonpoint Source Pollutants Loads from Sewage Treatment Area in Watershed of Nakdong River (낙동강 유역 내 하수처리구역의 비점오염원 부하량에 대한 비점저감 기여율 분석)

  • Jang, Jong Kyung;Kim, Mi Eun;Kim, Jae Moon;Jang, Young Su;Shin, Hyun Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.445-445
    • /
    • 2015
  • 비점오염의 특성에 대해 지속적으로 연구 중이지만 수문특성과 연관성이 크다 보니 그 일관성에 대해 확실한 기법이 개발되지 않았다. 기법 개발과 효과적인 오염원 관리를 위해 SWMM 등의 모형을 활용하고 있지만 투입된 노력과 시간에 비해 그 효율성이 매우 적은 편이다. 이런 부분을 보완하고자 본 논문에서는 기존의 비점오염량 산정방법이 아니라 낙동강유역의 도시화 특성 및 수문/기상자료와 처리장 운영자료를 활용한 차별화된 원단위법을 통해 비점 배출 부하량 산정방법을 제시하려고 한다. 배수구역 내 관거 시스템을 합류식으로 가정하였고 배수구역별 비점 발생형태는 하수처리장의 강우 유입량, 하수처리장의 우회유량(Bypass 유량), 하수처리구역의 CSO 유량 3가지로 구분 지었다. 유입 방류자료와 강우자료를 활용하여 임계강우량을 3mm로 설정하여 3mm이상일 경우에 우회유량이 발생한다고 가정하였고 우회유량 발생시 오염부하량 산정은 건기평균유량에 유량변동부하율을 곱하여 시간최대유량으로 전환한 후 강우 지속기간 동안만 우회유량이 발생하는 것으로 가정하였다. CSO 유량은 처리구역/배수구역 면적비에 따라 3개의 그룹으로 구분한 뒤 검증된 SWMM-온천천 모형의 각 소유역별 불투수면적비와 비교하여 유사한 소유역을 각 그룹의 대표유역으로 선정하였다. 선정된 소유역의 CSO 유량과 수문현상의 비선형적인 관계를 고려할 수 있는 신경망 기법을 적용하여 강우특성에 따른 CSO 오염부하량 산정을 실시하였다. 산정결과를 바탕으로 각 하수처리장별 비점저감 기여율을 산정한 결과 대구북부 처리장에서 21.56%로 가장 높은 효율을 보여줬으며 거창가조 지점에서 0.11%로 가장 낮은 효율을 보여주는 것을 확인 할 수 있었다. 이러한 결과를 바탕으로 낙동강유역 내 위치한 하수처리장의 효율성에 대해 알 수 있으며 개선되어야 할 처리장들을 알 수 있었다. 또한 획일화된 방법이 아닌 차별화된 원단위법을 통한 오염부하량 산정은 앞으로의 연구방향에 있어서 좋은 사례가 될 것으로 사료된다.

  • PDF

Seasonal Variation of Water Quality and Cryptomonads Distribution in Oncheon River (온천천내 수질 및 Cryptomonads 분포의 시기별 변화)

  • Jeong, Tae-Uk;Jeong, Sun-Young;Kim, Min-Jeong;Choi, Yoo-Jeong;Cho, Eun-Jeong;Jeong, Jae-Eun;Seo, Dong-Cheol;Park, Jong-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.3
    • /
    • pp.177-184
    • /
    • 2022
  • BACKGROUND: Recently, the inflow of nonpoint pollutants into rivers caused by rapid urban and industrialization promotes the proliferation of algae, which causes eutrophication of rivers. This study was conducted to evaluate the seasonal variation of water quality characteristics and cryptomonads growth in the Oncheon River. METHODS AND RESULTS: The water quality and distribution characteristics of cryptomonads in the Oncheon River were investigated monthly for 12 months from January 2021. The cell number of cryptomonads was intensively developed in January-April, and it decreased sharply in the summer with heavy rainfall. In particular, cryptomonads moved to the downstream side of the river depending on the time, and as a result, significant differences were shown for each investigation point. The Korean trophic state index (TsiKO) in Oncheon River was classified as eutrophy all year round, indicating that cryptomonads can grow year-round. Distribution characteristics of cryptomonads in Oncheon River showed high correlations with DO (r=0.678), BOD (r=0.826) and chlorophyll-a (r=0.613) in water. CONCLUSION(S): In order to reduce cryptomonads in the Oncheon River, it is judged that a complex countermeasure considering the residence time, insolation and precipitation along with water quality factors is required.

A Research on the Probabilistic Calculation Method of River Topographic Factors (하천 지형인자의 확률론적 산정 방식 연구)

  • Choo, Yeon-Moon;Ma, Yun-Han;Park, Sang-Ho;Sue, Jong-Chal;Kim, Yoon-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.509-516
    • /
    • 2020
  • Since the 1960s, many rivers have been polluted and destroyed due to river repair projects for economic development and the covering of small rivers due to urbanization. Many studies have analyzed rivers using measured river topographic factors, but surveying is not easy when the flow rate changes rapidly, such as during a flood. In addition, the previous research has been mainly about the cross section of a river, so information on the longitudinal profile is insufficient. This research used informational entropy theory to obtain an equation that can calculate the average river slope, river slope, and river longitudinal elevation for a river basin in real time. The applicability was analyzed through comparison with measured data of a river's characteristic factors obtained from a river plan. The parameters were calculated using informational entropy theory, nonlinear regression analysis, and actual data. The longitudinal elevation entropy equation for each stream was then calculated, and so was the average river slope. All of the values were over 0.96, so it seems that reliable results can be obtained when calculating river characteristic factors.

Development of real-time urban inundation prediction system (실시간 도시침수 예측 시스템 개발)

  • Lee, Seung Soo;Park, Kyung Won;Lee, Gi Ha;Ahn, Hyun Uk;Jung, Sung Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.62-62
    • /
    • 2019
  • 본 연구에서는 기상청에서 제공하는 인공위성 관측자료와 레이더 자료를 합성하여 예측된 선행시간 2시간의 강수량 예측자료를 이용하여 도시유역의 침수 발생 여부를 확인할 수 있는 시스템을 개발하였다. 대상유역은 부산광역시에 위치하고 있는 유역면적 $54km^2$의 온천천유역으로, $10m{\times}10m$의 해상도로 지표면의 침수예측을 수행한다. 침수예측에 이용되는 모델은 지표면과 하수관망 사이의 상호작용을 효과적으로 고려할 수 있도록 지표면 2차원, 하수관망 1차원 모델을 연계하였으며, 침수예측에 소요되는 시간을 최소화하기 위하여 OpenMP기반의 병렬해석 기법을 적용하였다. 또한 초기조건에 의한 오차를 줄이기 위하여 하천수위 관측소에 관측된 수위자료를 예측모델의 초기조건으로 입력할 수 있도록 시스템을 구성하였으며 유역 하류단에서 경계조건으로 활용되는 예측수위자료는 시계열자료의 예측에 뛰어난 성능을 보여주는 것으로 알려진 LongShort-term Memory(LSTM) 기법을 적용하여 이용하였다. 본 연구에서 개발된 실시간 도시침수 예측 시스템은 집중호우 발생시 침수 발생 위치를 사전에 빠르게 예측하여 도시유역의 인적 물적 자원의 피해를 저감하는데 적극적으로 활용될 수 있을 것으로 기대된다.

  • PDF

Community Patterning of Benthic Macroinvertebrates in Urbanized Streams by Utilizing an Artificial Neural Network (인공신경망을 이용한 도시하천의 저서성 대형무척추동물 군집 유형성 연구)

  • Kim, Jwa-Kwan;Chon, Tae-Soo;Kwak, Inn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.1 s.102
    • /
    • pp.29-37
    • /
    • 2003
  • Benthic macro-invertebrates were seasonally collected in the Onchen Stream in Pusan, from July 2001 to March 2002. Generally 4 phylum 5 class 10 order 19 family 23 species were observed in the study sites. Ephemeroptera, Plecoptera and various species appeared in headwater stream while Oligochaeta and Chironomidae were dominated in downstream sites. Community abundance patterns, especially the dominant taxa, Oligochaeta and Chironomidae, appeared to be different depending upon the sampling months. Oligochaeta was usually observed in July, December and March while Chironomidae was appeared in September. The biological indices, TBI(Trent Biotic Index), BS (Biotic Score), BMWP (Biological Monitoring Working Party)were calculated with the appeared communities of the sampling sites through the survey months. TBI showed 1 to 8, BMWP was 1 to 93 and CBI appeared 9 to 387 in the different sites. The biological indices decreased from headstream to downstream sites, We implemented the unsupervised Kohonen network for patterning of community abundance of the sampling sites. The patterning map by the Kohonen network was well represented community abundance of the sampling sites. Also, we conducted RTRN (Real Time Recurrent Neural Network) for predicting of the biological indices in the different sites. The results appeared that the predicting values by RTRN were well matched field data (correlation coefficient of TBI, BMWP and CBI were 0.957, 0.979 and 0.967, respectively).